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Chapter 0

Preliminaries from Measure Theory

0.1. Algebras and o-Algebras

Throughout this section, we use X to denote an arbitrary set. If A is a subset
of X, we write A° = X \A for the set-complement of A relative to X. We also define
2(X) to be the power set of X, that is, the set formed by all subsets of X.

Definition 1 (Algebra and o-algebra). Let o = 22(X) be a collection of subsets of
X. Then « is called an algebra over X if it satisfies:
(i) (Contains empty set) We have @ € «;
(i) (Closed under complements) If A € o/, then A€ € o/
(iii) (Closed under finite unions) If A1,..., Az €</, then A1U...UA, e H.
Moreover, & is called a o-algebra over X if in addition to being an algebra, it also
satisfies:

(iv) (Closed under countable unions) If {A,},e1 €<, I €N, is a countable family of
sets in &/, then U,c; A, € .

If o/ on X is an algebra (or a o-algebra) then a subset of X is called «/-
measurable if it is an element of the o-algebra <.
Here are some first examples of algebras over a set X.

Example 2 (Examples of algebras).
® The collection of subsets of X which are either finite or co-finite (meaning that
their complement is fininte) is an algebra.
¢ The collection of all finite unions of intervals of the form (-oo0, b1, (a,b],(a,oc0),
for a,b € R, is an algebra on the real numbers R.

Note that any o-algebra is an algebra but the converse is not true. Indeed, the
second algebra provided in Example 2 above is not a o-algebra.

5
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A o-algebra is also closed under countable intersections, that is, given a o-
algebra </ and a countable family of sets {A,},c1 S <, I N, we have that (N,,c; A, €
&/ . This follows from De Morgan’s law ((N,c1 Ar)° =Urer AS € &, and property (iv).
Here are some basic examples of o-algebras.

Example 3 (Examples of o-algebras).

e P(X) and {@,X} are o-algebras.

® For any subset A c X, o« ={¢,A,X\A, X} is a g-algebra.

* The collection of subsets of X which are either countable or co-countable
(meaning that their complement is countable) is a o-algebra.

¢ Given two o-algebras /1,9 € 2?(X), we have that «/; N is also a o-algebra.
More generally, for any (possibly uncountable) family of o-algebras «f; € 2(X),
i €I, the intersection N,c; <, is a o-algebra.

There is a very natural way of generating o-algebras from a collection of subsets:

Definition 4 (Generated o-algebra). Let & < 22(X) be a collection of subsets of
X. The smallest o-algebra containing &, that is, the intersection of all o-algebras
containing & is called the o-algebra generated by &, and is usually denoted by
o(F).

There are many families of subsets that generate useful o-algebra, we will cover
in this section some of them. Here are two simple examples of generated o-algebras.

Example 5 (Examples of o-algebras generated by collection of subsets).

¢ The o-algebra on X consisting of all countable and co-countable subsets of X
is the o-algebra generated by the collection of all singletons of X.

e Let X1,X2 be two sets, and «/1,9% be o-algebras on X; and Xo respectively.
We define <1 ® o5 to be the o-algebra on the Cartesian product X = X1 x X9
generated by all the subsets of the form A; x Ag € X, where A; € /1 and
Ag € of5. Note that o] ® o is called the product o-algebra generated by </
and .52¢2

A special case of o-algebras generated by a collection of subsets are the o-
algebras generated by the open subsets with respect to some topology. This type
of g-algebra will be one of our main focus in Ergodic Theory as we will study the
dynamical properties of dynamical systems on topological spaces such as the torus.

Definition 6 (Borel o-algebra). Let (X, 1) be a topological space. The o-algebra
generated by the open subsets of X is called the Borel o-algebra on X and we usually
denote it by %Bx, or simply 48. Its elements are called the Borel measurable subset
of X.

We give here two examples of such o-algebras that will be used latter in this
section.

Example 7 (Examples of Borel o-algebras).
 Consider R? endowed with its usual topology. Then, the Borel-o-algebra on
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R? is the o-algebra generated by the open balls B,(x)={y e R% : |x—y| <r}. It
contains all closed subsets of R%, but not all subsets of R?.

* Consider a finite set X, usually called the alphabet, containing n elements,
usually refereed to as the letters of =. The infinite product =N can then be
identified with the set of all infinite strings in these letters. Observe that
the natural topology on X is the discrete topology, whose basis consists of
singletons, i.e., sets consisting of individual letters. The Borel o-algebra on
>N is the o-algebra generated by the algebra of cylinder sets, where cylinder
sets consist of the open sets of x € =N (with respect to the product topology of
=N) that have finitely many coordinates fixed.

We now define the notion of monotone class, which gives rise to another charac-
terization of o-algebras.

Definition 8 (Monotone class). A monotone class .« < 2?(X) is a collection of
subsets of X having the following properties:

() if A1,Ag,---e# and A1 cAsc...,then U A€M

(i) if B1,Bg,---€ # and B12B32...,then (> B, € ./

Note that both 22(X) and {®,X} are monotone classes. Thus any collection of
subsets is contained in a monotone class. The following theorem gives an alternative
characterization of the o-algebra generated by an algebra.

Theorem 9 (Monotone Class Theorem). Let of < Z?(X) be an algebra and let ¥ be
the smallest monotone class containing «/. Then we have o(«f) = .

0.2. Measures and Measure spaces

A measure is a function that assigns a non-negative number to certain subsets of
a set X in a manner consistent with the algebra of Boolean set operations, includ-
ing unions, intersections, and complements. Measures provide the mathematical
foundation for modelling quantities such as mass, length, area, volume, and, most
importantly, probability. The subsets to which a measure can be assigned are called
the measurable sets.

Definition 10 (Measurable space and measurable set). An ordered pair (X, /),
where X is a set and of € 22(X) is a o-algebra, is called a measurable space, and
any set A € « is called a measurable set.

Definition 11 (Measure and measure space). A measure p on a measurable space
(X,o) is a set function u: o/ — [0,00] such that:
(i) w(@)=0;
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(ii) For any countable (or finite) sequence of pairwise disjoint sets (A;)nen €
we have

(0,9 (e,
U ( U An) =) wAp). (0-additivity)
n=1 n=1
If (X,<f) measurable space and p is a measure on it then the triple (X, </, ) is
called a measure space.

The main structure of interest in classical ergodic theory is that of a probability
space.

Definition 12 (finite and o-finite measure space, probability space). A measure
space (X, <, u) is said to be a finite measure space if p satisfies u(X) < oo, and if in
addition u(X) =1, (X, </, ) is called a probability space.

(X,o, ) is called a o-finite measure space if X is a countable union of elements of
& of finite measure.

We now state different useful properties about measures.

Proposition 13. Given a measure space (X, </, 1), we have the following properties:
(i) (Finite unions) For any positive integer n and disjoint sets A1,A9,...,A, €<,
using the fact that u(@) =0, we have

n n
M(U Ak) =) (Ap).
k=1 k=1

(i) (Monotonicity) If A,B € of and A ¢ B, then u(A) < u(B).

(iii) (Countable subadditivity) For any countable family of sets {Ap e S, I SN,
not necessarily disjoint, we have

p(0an) < 55
n=1 n=1

(iv) (Continuity) IfA; S Ags<S---€«, then
o0
tim pan) = (U 4n),
k—o0 n=1
and ifA1 2 Ag2---€«f, and pu(A1) < oo, then

oo
lim p(Az) = u( An).

k—oo n=1
Throughout the course we will extensively use the notion of "almost everywhere"
(or "for almost every"”). In short, a property holds almost everywhere on a set X
if the subsets of elements for which it doesn’t hold has zero measure. During the
course, as we deal with probability measures, one way of seeing this notion is as
follows: If we pick at random an element x € X, then the probability that x satisfies



the given property is 1. Here is the formal definition.

Definition 14 (Almost everywhere). Let (X,</,u) be a measure space. We say that
a property holds p-almost everywhere on X (sometimes abbreviated as p-a.e.) if
it the set of elements for which the property does not hold has zero measure with
respect to p.

Examples

Below, we provide several examples of important measure spaces, many of which
will appear again as we delve deeper into ergodic theory throughout the course.

Null measure. Let X be a non-empty set, let o«f be a o-algebra on X and define
WA)=0, VA € /. Then (X, o/, n) is a measure space and u is refereed to as the null
measure on (X, <f).

Counting measure. Let X be a set, and for any A € 22(X) define u(A) = |A|,
where |A| denotes the cardinality of A. Then (X,22(X),u) is a measure space and p
is called the counting measure on X. This measure is finite when X is finite, it is
o-finite when X is countable, and it is not o-finite when X is uncountable.

Dirac §-measure. Let (X,</) be a measurable space, and x € X. Then we define
the Dirac measure 6, by

1 if x€A,
0 if x¢A.

The Dirac measure is a probability measure, and it represents the almost sure
outcome x in the measurable space.

64(A)= {

Restriction of a measure. Let (X,</,u) be a measure space and A € «f. We
define the measure v by v(B) = y(BnA),VB € &, to be the restriction of u to A.
Then (X, </, v) is measure space and v(B) =0, VB € of with B X \A.

Conditional measure. Let (X,<,u) be a measure space and A € of with u(A) > 0.
We define for every B € «,
wAnNB)
wA) -
The set function B — p(B|A) is a measure on & called the conditional measure with

respect to A. If u is a finite measure (resp. probability measure) then the conditional
measure with respect to A is also a finite measure (resp. probability measure).

w(BIA) =
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Product measure. Let (X1,94,u1) and (Xg,9%0, t2) be two measure spaces. Let
o = o1 ® ofs be the product o-algebra on the product space X = X; x Xo. We define
the product measure p = p; x g2 (also sometimes denoted 11 ® u2) to be the unique
measure on the measurable space (X, «/) which satisfies u(A;1 x Ag) = p1(A1)u2(As)
for every A1 € &1 and Ag € ofs.

Probability measure on XN, Let X =N be the set of all infinite strings whose
letters are in the finite alphabet X, and let < the Borel o-algebra on =N as previously
introduced in Example 7. Let po be any probability measure on X. We define u = uﬁ'
to be the product measure on =N, which is the unique measure satisfying for every
cylinder set I,

p(I) = [T polix})

ieF
where F' is the finite set of the indices of the fixed coordinated of I.

Borel measure. In order to define Borel measures, we recall two definitions from
topology.

Definition 15 (Hausdorff topological space). A topological space X is Hausdorff
if for any distinct points x,y € X, there exists open neighborhoods U,V of x and y
respectively such that U and V are disjoint.

Definition 16 (locally compact topological space). A topological space X is locally
compact if every x € X has a compact neighborhood.

Now, let X be a locally compact Hausdorff topological space and 28 the Borel o-
algebra defined on X. Then, any measure u defined on 4 is called a Borel measure.
If (X)) =1, we say that u is a Borel probability measure.

Radon measure. Let X be a locally compact Hausdorff topological space, 28 the
Borel o-algebra defined on X, and p a finite Borel measure on 28. If in addition
u is tight, in the sense that for all € > 0 there exists a compact set K € X such
that (X \K) < ¢ (or equivalently u(K) > w(X)—¢), p is called a Radon measure.
These conditions guarantee that the measure is compatible in some sense with the
topology of the space. An useful property of the Radon measure is that it makes the
map f — [ fdu, where f € L1(X), continuous (recalls about integration theory are
given in the next section). The following measures are examples of Radon measures:
the Lebesgue measure on an Euclidean space, the Haar measure on any locally
compact topological group, the Dirac measure on any topological space.

Lebesgue measure. The Lebesgue measure is the unique measure p on the
Borel-g-algebra 28R such that for every interval I = R, the measure u(7) is the length
of I.
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We observe that the restriction of p to the Borel-o-algebra % 1] of subsets of [0,1]
is the so called uniform distribution from probability theory.

We can generalize this idea to higher dimensions. Indeed, for the lower dimensions
n =1,2, the Lebesgue measure coincides with the notions of area and volume. For
higher dimensions, it is also called n-dimensional volume.

More generally, if we consider the measurable space (R",%Bg~), the Lebesgue mea-
sure 1 on PBg- is the unique measure such that if A is a cartesian product of intervals
Iy x---xI,, then A is Lebesgue measurable (in the sense that we can attribute a
Lebesgue measure to A) and u(A) = ]'[;’=1 I(I;), where [ denotes the length of the
interval I;, i.e, [ is the Lebesgue measure in one dimension.

We list, without proof, some of the properties of the Lebesgue measure on %n:

(i) (translation invariance) If A € R" is Lebesgue measurable, and x € R”, then
A+x={yeR":y+xe€ A} is Lebesgue measurable and p(A +x) = y(A). In
particular, A < R" is Lebesgue measurable if, and only if, all translates of A is
Lebesgue measurable.

(ii) (dilation and scaling) Let ¢ > 0, A < R" be Lebesgue measurable, and let
cA ={cyeR":yec A}, then cA is Lebesgue measurable and u(cA) = c"u(A).
(iii) More generally, if T is a linear transformation and A is a Lebesgue measurable
subset of R", then T'(A) is a Lebesgue measurable set of measure |det(7)|u(A).
(iv) Finite or countable sets are Lebesgue measurable and have Lebesgue measure
0, and there exist uncountable Lebesgue measurable sets of measure 0. As an
example, we can consider the Cantor set (when n = 1). Moreover, there exists
sets which are not Lebesgue measurable.
Finally, note that the Haar measure (to be seen in the section about topological
groups) on a locally compact Hausdorff topological group can be thought of as
the natural generalization of the Lebesgue measure to a general locally compact
Hausdorff topological group.

Atomic, non-atomic, and continuous measures. In order to define discrete
and continuous measures we will need the following definition.

Definition 17 (Atom). Given a measure space (X, <, ), a set A € &« is called an
atom if:

(i) p(A)>0,and

(i) For any measurable set B < A with u(B) < u(A) we have u(B) = 0.

A o-finite measure y on a measurable space (X, /) is called purely atomic if ev-
ery measurable set of positive measure contains an atom. On the contrary, a o-finite
measure which has no atoms is called non-atomic. Equivalently, u is non-atomic if
for every measurable set A such that p(A) > 0 there exists a measurable subset B of
A such that 0 < u(B) < u(A).

Finally, a o-finite measure y is called continuous if for any A € o/ and any ¢ € R such
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that 0 < ¢ < u(A), there exists a measurable subset B of A such that pu(B) =c. Note
that any continuous measure is non-atomic.

There are two important existence theorems for measures, the Carathéodory
Extension Theorem and the Riesz Representation Theorem.

Definition 18 (Pre-measure). Let </ be an algebra on a set X. A set function
Lo: & —[0,00] is called a pre-measure on (X, &) if po() = 0 and, for every countable
(or finite) sequence A1,Aq,... € of of pairwise disjoint sets whose union lies in &/,
we have

o0 o0

Ko ( U An) =) po(Ap). (o-additivity)
n=1 n=1

Theorem 19 (Carathéodory). Let «f be an algebra on a set X. Any pre-measure [

on &/ extends to a measure p on the o-algebra o(<f) generated by <. Moreover, if

Wo 1s o-finite then this extension is unique and o -finite.

Theorem 20 (Riesz-Markov-Kakutani representation theorem). Let X be a locally
compact Hausdorff space. Let €(X) be the Banach space of continuous functions
on X with the norm ||f|l¢x) = sup,ex!|f®)|. Ifl: €(X) — C is a positive linear
functional on 6(X), then there exists a unique Radon measure y on X such that

1= f du,
for all f € €(X).

0.3. Measurable Functions and Integrals

Throughout this section we let (X, </, u) be a measure space. Natural classes of
measurable functions on X are built up from simpler functions, just as the o-algebra
&/ may be built up from simpler collections of sets. Given a set A < X, we denote by
14: X — {0,1} the indicator function of A, that is,

1 ifxeA,
1A(x)—{ 0 ifx¢A, VxeX.
Definition 21 (Simple function). A function f: X — R is called simple if
m
f(x)= ZcJ-IAj(x), VxeX,
j=1

where c; € R and the A € of are disjoint sets Vj=1,...,m. The integral of f is then
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defined to be
m
f Fdu=Y ciuA)). 0.3.1)
j=1

Definition 22 (Measurable function). A function g: X — R is called measurable if
g‘l(A) € of for any (Borel) measurable set A € %g.

Note that simple functions are always measurable functions. Below, we outline
several methods for generating new measurable functions from existing measurable
ones.

Proposition 23. Let f,g: X — R be measurable, and c € R. Then, the following
functions are measurable:
@) cf
(i) f+g
(iii) fg
iv) If]
(v) min{f, g} and max{f, g}

The integral of simple functions has already been defined in (0.3.1). Our next
goal is to extend this definition to all measurable functions. To achieve this, we rely
on the following key approximation result.

Proposition 24. Let g: X — R be a measurable function taking non-negative
values. There exists a pointwise increasing sequence of simple functions (f)nen (in
the sense that f,(x) < fr+1(x) for all x € X and n € N) such that lim,, ., f(x) = g(x)
for eachx € X.

Definition 25 (Integral of non-negative measurable function). Let g: X — Ry
be a measurable function taking non-negative values, and let (f,),en be a point-
wise increasing sequence of simple functions converging to g as guaranteed by
Proposition 24. Then the integral of g is defined to be

fg du=,}irgloffn dp.
Moreover, g is called integrable if [ g du <oo.

Observe that the expression [ g du defined above is guaranteed to exist since
fn(x) < fr+1(x) for all n € N and x € X. One can show that this is well-defined, i.e.,
that it is independent of the choice of the sequence of simple functions.

We now extend the notion of integral for any measurable functions.

Definition 26 (Integral of general measurable function). Given a measurable
function g: X — R, g has in general a unique decomposition g = g. —g_, where
g+(x) =max{g(x),0} and g_ = max{—g(x),0} for every x € X. Note that both g, and
g- are measurable. The function g is said to be integrable if both g, and g_ are
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integrable, and the integral of g is defined as

fgdu=fg+du—fg- du.

Here is a way of determining if a given function is integrable or not.

Proposition 27. Let f,g: X — R. If f is integrable and g is measurable with
|g| < f, then g is integrable.

Being integrable is preserved under restriction to a measurable set, and we give
the definition of the integrable restricted to a measurable set:

Definition 28 (Integral over measurable set). Let f: X — R be an integrable
function, and A be a measurable set. The integral of f over A is defined as

[ du= [ 14 au

0.4. L? Spaces

We now recall some definitions and facts about L? spaces, which are function
spaces defined using a natural generalization of the p-norm for finite-dimensional
vector spaces. LP spaces form an important class of Banach spaces in functional
analysis, and of topological vector spaces. In the course of Ergodic Theory we will
use various results about functional analysis and in particular about LP spaces.
Further recalls about functional analysis are given in the next section.

Definition 29 (¥£? space). Let (X,«, ) be a measure space. For 1 < p < oo, we
define the set £P(X,o/,u) (sometimes also denoted £”(u)) to be the set of all
measurable functions f: X — R such that [|fIP du < oco.

Definition 30 (L? space). We define an equivalence relation on .Sfﬁ by f ~ g if
JIf —gI? du =0 and we write L‘Z = 25 / ~ for the space of equivalence classes.
Elements of Lﬁ will be described as functions rather than equivalence classes, but
it is important to remember that this is an abuse of notation.

Furthermore, we define the norm ||-||, by:

ift, = [1re du)yp

We now give the definition of the Lﬂ in the case p = o0.

Definition 31 (Essential supremum). The essential supremum is the generalization
to measurable functions of the supremum of a continuous function, and is defined
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by:
If loo =infla €Rxp : p{x € X : f(x) > a}) = 0}.

The space £;° is then defined to be the set of measurable functions f such that
£ loo < 00. Once again, L‘Ij° is defined to be .Sfﬁ°/ ~.

Proposition 32. Under the norm |-||, previously defined, Lf, is a Banach space,
for every 1 < p < oo.

Proposition 33. For 1< p < g < oo we have Lf, ) LZ for any finite measure space,
with strict inclusion except in some degenerate cases.

Finally we turn to integration of functions of several variables.

Theorem 34 (Fubini—Tonelli). Let (X, </,u) and (Y ,98,v) be two measure spaces
and let f be a non-negative integrable function on the product space (X xY ,«/ ®
2B, ®v). Then, for yu-almost every x € X the function y — f(x,y) is integrable, and
for v-almost every y € X the function x — f(x,y) is integrable, and we have

fX G = fX ( fY £(x,) dv(y)) du() = fY ( fX £x,9) du(x)) dv(y).

0.5. Convergence Theorems

The most important distinction between integration on L? spaces as defined
above and Riemann integration on bounded Riemann-integrable functions is that
the L? functions are closed under several natural limiting operations, allowing
for the following important convergence theorems. We start with the Monotone
Convergence Theorem.

Theorem 35 (Monotone Convergence Theorem). Suppose f1 < fe<... is a point-
wise increasing sequence of non-negative real-valued measurable functions on the
measure space (X, <, u) which converges almost everywhere to a function f on X.
Then f is measurable and

ff du=,}g§°ffn dp.
In particular, iflim, . [ fn du < oo, then f is integrable.

When the f,,n €N, are integrable, the assumption that f, is non-negative for
every n € N can be dropped by considering instead the non-negative sequence of
measurable function g, = f, — f1, which is also a pointwise increasing sequence.
Next, we state Fatou’s lemma, which is not only needed to prove the dominated
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convergence theorem below but it includes also a statement of the behaviour of the
integral under pointwise (or almost everywhere) convergence: The integral is lower
semi-continuous under almost everywhere convergence.

Theorem 36 (Fatou’s lemma). Let (f,),en be a sequence of non-negative real-valued
measurable functions on the measure space (X,</,u). Then, f =liminf, . f, is
measurable and

timinf [ fo du> [ £ du= [ limint/, du
In particular, if f,, is integrable for every n € N, then f is also integrable.

Contrary to the Monotone Convergence Theorem, the hypothesis that f,, is non-
negative for every n € N cannot be dropped.
Finally, we state the Dominated Convergence Theorem, which formulates sufficient
conditions under which almost everywhere convergence yields an integrable function
and such that limit and integral are interchangeable. Note that this is an important
difference with Riemann integral.

Theorem 37 (Dominated Convergence Theorem). Let (X, </, 1) be a measure space.
If h: X — R is a non-negative integrable function, and (f,),en IS a sequence of
measurable real-valued functions on (X, ,u) which are dominated by h in the
sense that |f,| < h,Vn €N, and lim, ., f» = f exists almost everywhere, then f is
integrable and

[ £ du=Jim [ £ au



Chapter 1

Measure Preserving Systems

1.1. Definition and Examples

Most of the material in this lecture notes is also contained, for instance, in
[Wal82] and in [EW11].

Definition 38 (Measure preserving transformation). Given a probability space
(X, o, 1), we say that a measurable map T': X — X preserves the measure or is a
measure preserving transformation if for every A € o we have (T 1A) = u(A).

Recall that for any probability space (X, </, 1) and any measurable map 7': X —
X, the measure T'u defined via

TwA)= (T 'A), VAed,

is a probability measure on & called the push-forward of p under T. If Ty = u, we
say that the measure p is invariant under the map 7T'. This invariance implies that
the map T does not change the measure of any measurable set, or in other words, for
any A € o, we have u(T1(A)) = u(A). Thus, saying that T preserving the measure
¢ (as defined in Definition 38) is equivalent to stating that u is invariant under T';
the two terms express the same property and and we will use them interchangeably
throughout these lecture notes.

Example 39. Imagine a computer program with the capability to generate uni-
formly at random and without bias a real number x in the interval [0,1)={x e R:
0 < x < 1}. Then there is a 50% chance that a number generated with this program
lies in the interval [0,1/2), and a 20% chance that the generated number lies in the
interval [3/5,4/5), just as an example. Now consider a second, considerably simpler,
program that receives as an input a real number x € [0,1) and produces as an output
the number y = 2x mod 1. If you first run program number one to produce x and
then apply program number two to “transform” x to y, then has this procedure still

17
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generated a “random” real number between 0 and 1? In particular, is there still a
50% chance for y to belong to the interval [0,1/2), and a 20% chance for it to belong
to [3/5,4/5)? The answer is yes! The first program produces a number chosen at
random with respect to the Lebesgue measure on [0,1) and the second program
corresponds to the transformation 7': [0,1) — [0, 1) given by 7'(x) = 2x mod 1. Since
T preserves the Lebesgue measure on [0, 1), the second program does not introduce
any subsidiary bias, meaning that the second number can also be thought of as
chosen at random with respect to the Lebesgue measure on [0, 1).

Definition 40 (Measure preserving system). A measure preserving system is a
quadruple (X,«/,u,T) where (X, <, ) is a probability space and T: X — X is a
measure preserving transformation.

Examples

The following examples illustrate the above definitions and serve as a guide for the
concepts and results presented in later sections.

One point system. If X ={x} is a singleton then there exist only one o-algebra
&/ and only one probability measure y on X, namely «f = {@, {x}} and u(@) =0 and
p({xh)=1. Let T : X — X be the identity map. Then (X, </, u,T) is a (rather trivial)
measure preserving system, called the one point system.

Identity systems. Let (X,<,u) be an arbitrary probability space and let 7' =idy
be the identity map on X. Since the push-forward of p under idy is always equal
to u, (X,<,u,idx) is a measure preserving system. Systems of this kind are often
referred to as identity systems.

Rotation on m points. Given an integer m > 2, let X ={0,1,...,m — 1}, which
we can identify with the finite cyclic group of order m. Let o be the power set of
{0,1,....m—1}andlet T: {0,1,...,m -1} = {0,1,...,m — 1} be the map

T(x)=x+1 mod m.

Finally, let u be the probability measure uniquely determined by u({i}) = 1/m for
alli =0,1,...,m — 1. The resulting measure-preserving system (X, </, u,T) is called
rotation on m points.

Circle rotations. Let X =[0,1), endowed with the Borel o-algebra </ and the
Lebesgue measure p. Given a € R we consider the map T'=T,: X — X given by
Tx =x+a mod 1. The fact that T preserves the measure u follows from the basic
properties of Lebesgue measure.
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Alternatively, we can identify the interval [0, 1) with the compact group T =R/Z
in the obvious way. The Lebesgue measure on [0, 1) gets identified with the Haar
measure on T, and T becomes the map Tx = x + & (wWhere @ = a + Z € T). This map
clearly preserves the Haar measure.

The reason to call this system a circle rotation is that the 1-dimensional torus T is
isometrically isomorphic to the circle S! c C, viewed as a group under multiplication.

The map T under this identification becomes the rotation 7' : z — 6z, where 6 =
2mia 1
e €S-,

Compact group rotations. The previous two examples are special cases of so-
called group rotations: If (G,+) is a compact abelian group, endowed with the Borel
o-algebra % and the (normalized) Haar measure mg, then for any fixed a € X, the
map R: x— x+ a preserves mg and hence (G,%g,ma,R) is a measure preserving
system.

The doubling map. The next example of a measure-preserving system is one that
we have already encountered in Example 39 above. Take (X, <, u) to be the unit
interval [0, 1) equipped with its Borel o-algebra and Lebesgue measure. Let 7': X —
X be the doubling map T(x) = 2x mod 1. Let us show that this transformation
preserves the measure: Given an interval [a,b) €[0, 1), the pre-image T 1([a, b)) is
the union of two intervals, each half the length of the original interval:

a é)u a+1 b+1)
2’2 )

2 2
This shows that the Lebesgue measure of [a,b) and T~ 1([e, b)) are identical. Since
T~! preserves the measure of all intervals and since intervals generate the Borel
o-algebra on [0, 1), it follows that T' is a measure-preserving transformation.

More generally, for any positive integer p the map T'(x) = px mod 1 preserves
the Lebesgue measure, giving rise to a class of measure-preserving systems whose
dynamical behaviour can offer new insights on base-p digit expansions of the real
numbers.

T (la,b)) =

Toral endomorphisms and toral automormphisms. The transformations
T(x) = px mod 1 for p € N introduced in the previous example are 1-dimensional
instances of so-called toral endomorphisms. For higher-dimensions, these are
defined as follows. Given a matrix A € GL(n,Z), one can construct the measure
preserving system (X, </, u,T'), where X =[0,1)", o« the Borel o-algebra on [0,1)",
i the n-dimensional Lebesgue measure restricted to [0,1)"?, and T is defined by
Tx =Ax mod Z". Whenever det(A) # 0, we call T a linear toral endomorphism.
Note that in general, A is not invertible in GL(n,Z). However, if det(A) = +1
then A~! exists, and belongs to GL(n,Z). Such a matrix is called unimodular. In
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this case, T is said to be a toral automorphism, and its inverse transformation 7"~!
is given by T"1x = A~1x mod Z”.

Arnold’s cat map. In the case n =2, we define Arnold’s cat map to be the toral

automorphism where A = (? 1

by T'(x,y)=(2x+y mod 1,x+y mod 1). It was named after Vladimir Arnold, who
demonstrated its effects in the 1960s using an image of a cat, hence the name. Note

that (i i) = (3 1) (1 (1)), that is, the square is sheared one unit up, then two units

to the right, and all regions outside the unit square are reduced modulo Z2 to lie
in the unit square. The following picture is showing how the linear map stretches
the unit square and how its pieces are rearranged when the modulo operation is
performed.

) € GL(2,Z). The induced map is therefore given

0.5

-0.5

Figure 1.1: Visualization of the effect of Arnold’s cat map on the unit square

A central concern of ergodic theory is the dynamical behavior of a measure pre-
serving system when it is allowed to run for a long time, and one of the main
object of study is the notion of periodicity, i.e the question of how and when orbits
in dynamical systems return to their initial position. In this sense, Arnold’s cat
map is an interesting example as it exhibits various interesting properties based
on periodicity. Indeed, a noticeable property is that for any n € N, the number of
points with period n (returning to their initial position after n iterations) is exactly
|AT + A5 — 2|, where 1; and Az are the eigenvalues of the matrix A. In fact, yhe set
of points with a periodic orbit is dense on the torus. Actually, it can be shown that a
point is periodic if and only if its coordinates are rational.
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An interesting application of Arnold’s cat map, and more generally, chaotic maps, is
in the domain of image encryption. Indeed, instead of a torus, we consider an N x N
pixels picture and the following sequence :

)= 2)(5) meaw

Yn+1 1 1)\yn

which describes the position of a given pixel after n iteration, where initially we pick
x0,¥0 €10,1,...,N —1}. One of this map’s features is that when iteratively applied
to an image, the result apparently looks randomized in a first place, but it always
returns to its initial state after a number of steps depending on the size of the
image. As it can be seen in the picture below, the original image of the cat is sheared
and then wrapped around in the first iterations of the transformation. After some
iterations, the various pixels of the original picture appear rather mixed together in
a random manner, yet at various iterations, we can somewhat distinguish multiple
smaller appearances of the cat arranged in a repeating structure, and it ultimately
returns to the original image.

original

Figure 1.2: Visualization of the effect of Arnold’s cat map on the unit square

Bernoulli schemes. Let X ={0,1}N be the space of all (one-sided) infinite strings
of 0’s and 1’s. Giving {0, 1} the discrete topology, we can endow X with the product
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topology!. In view of Tychonoff’s theorem, X is compact. Let </ be the Borel
o-algebra on X generated by the cylinder sets. Given p € (0,1), let gy be the
measure on {0,1} given by po({1}) = p and pp({0}) =1-p, and let u = uﬁ' be the
product probability measure on X already defined in the first chapter. There is
a natural map 7': X — X that preserves this measure p, called the left-shift: For
(xr)721 € X define T((x4)52,) = (yn)3>; where y, = x,1 for all n €N. The resulting
measure preserving system (X, «/,u,T') appears naturally in symbolic dynamics
and is related to so-called Bernoulli processes in probability and statistics.

Instead of sequences consisting of 0’s and 1’s, one can also consider sequences
using elements from any other alphabet . In general, a measure preserving system
is called a Bernoulli scheme if it is of the form (X, </, u, T) where X = =N, o is the
o-algebra of Borel sets on X generated by cylinder sets, 7' is the left shift and u = [,L(;N
is the product measure of some arbitrary probability measure p on .

Baker’s transformation. This example offers another way of generalizing the
doubling map to two dimensions. Consider the probability space (X, </, 1), where
X =1[0,1)? is the unit square, o is the Borel o-algebra on X and p is the two-
dimensional Lebesgue measure. We define the Baker’s map T': [0,1)2 — [0,1)? by

2x,3) for 0<x<},0<y<1
T(x,y)=
@x-1,%7) for 1<x<1,0<y<1

Then, T is an invertible, measurable and measure preserving transformation.
We can define an analogous map S : X — X by :

(8x,3) for 0<x<3,0<y<1

S(x,y)= (2—3x,yT+1) for <x<%,0<y<1

o=

(Bx-2,%2) for 2<x<1,0<y<1

which is also invertible, measurable and a measure preserving transformation. To
visualize what the map S does on the unit square, one can see that it represents the
process of making the well-known French delicacy puff pastry, used in croissants and
various other pastries. The idea is as follows: you have a piece of dough (represented
by the unit square) with the lower half being the dough and the upper half being
the butter. You then stretch the dough by 3 times its original length and consider
the dough as composed of 3 parts, each of length one. We then fold it just as a baker
would do it (hence the name Baker’s transformation), namely, we put the second
part on top of the first part, and the third part on top of everything, without cutting

IThis means that a set U < X is open iff for every x € U there exists n € N such that if y € X
satisfies y; =x; forall i <n,then ye U.
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the dough, and finally, we compress the result in order to get back the unit square.
This process is a chaotic map from the unit square into itself and it has this very
niece property that it will efficiently mix the dough and the butter in order to form
a very homogeneous buttered dough. In ergodic theory, we call this phenomenon
strong mixing, which will be covered in Chapter 6.

Product systems. One way to construct new measure preserving systems out
of given ones is by taking their product. Given two measure preserving systems
X,o,u,T) and (Y,%,v,S), we define their product to be the measure preserving
system (Z,€¢,A,R), where (Z,¢,1) = (X xY,of ® B,u xv) is the product of the
probability spaces (X,</,u) and (Y,%,v), and R: Z — Z is defined as R(x,y) =
(Tx,Sy).

Skew-products. Let X =[0,1)?, let & be the Borel o-algebra and let u be the

Lebesgue measure. Fix a e Rand let T': X — X be the map T'(x,y) =(x+a mod 1,y+

x mod 1). Then (X,</,u,T) is a measure preserving system called a skew-product.
To see why T preserves the measure, observe that it suffices to check that for

any f,g€C(0,1))

1 p1 1 p1
f f f(x+amod 1)g(x+ymod 1) dy dx = f f f(x)g(y) dy dx,
0 Jo 0 Jo

which can be verified directly.

1.2. Recurrence

At the end of the XIX’th century, the french mathematician Henry Poincaré
put an end to a myth acquired since Newton, that the universe is deterministic in
the sense that knowing the past uniquely determines the future. Newton perfectly
described the action of gravitational forces between two celestial bodies, but these
laws don’t apply as well to systems with more than two bodies.

It is in this context that Poincaré, in his work, considered systems with 3
celestial bodies. Newton’s equations applied at these 3 bodies lead to a very complex
differential equation that cannot be solved. He showed that in the special case where
one body has zero mass, and the other two have a circular movement, then, the
three bodies will eventually return infinitely many times to their original position.
This initial observation led to the statement of Poincaré’s Recurrence Theorem,
which was proved 30 years later by Carathéodory using measure theory.

Here is the first theorem of ergodic theory.
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Poincaré’s Recurrence Theorem. Let (X, </, u,T) be a measure preserving sys-
tem and let A € of with u(A)> 0. Then for some n € N we have

HANT ™A)>0. 1.2.1)

Proof. Since T is measure preserving, for any n € N the set 77" A has the same mea-
sure as the set A. Since the ambient space X has measure 1 and A, T"1A, T2A,...
is an infinite sequence of sets with the same (positive) measure, by the pigeonhole
principle there must exist i > j with /(T ANT7A)> 0. Letting n = i — j, we obtain

HANTA)=u(T/ANT "A)) = (TANT7A)>0.
O

Corollary 41. Let (X,«,u,T) be a measure preserving system and let A € «f. Then
for p-a.e. x € A there exists n € N such that T"x € A, i.e. x returns to A at time n.

Proof. Let B:={x€ A:T"x ¢ A for all n € N}; we need to show that u(B) =0. If
@(B) > 0, then by Poincaré’s Recurrence Theorem one can find m € N such that
BnT~™B has positive measure and, in particular, is non-empty. Butif ye BnT™B
then T™y € B € A, contradicting the fact that y € B. This contradiction implies
w(B)=0. O

Poincaré’s Recurrence Theorem and its many generalizations, variations, and ap-
plications, form a sub-field of ergodic theory called the theory of recurrence. Broadly
speaking, it focuses on the question of when and how close orbits in dynamical
systems return to their initial position. The recurrence properties of measure pre-
serving systems can provide important information about their dynamical behavior.
Also, as we will discover in this course, there exist remarkable synergies between
the theory of recurrence and problems in number theory and additive combinatorics.

1.3. Ergodicity

Poincaré’s Recurrence Theorem asserts that the orbit x, T'x, T2x, ... of a typical
point x € X returns to its initial location. But it doesn’t provide any further informa-
tion about the distribution of the orbit within the space. This is where the notion of
ergodicity comes into play.

The word ergodic is derived from Ludwig Boltzmann’s ‘ergodic hypothesis’ in
thermodynamics, which describes a Hamiltonian system? with the property that
the time spent in a certain region of the space is proportional to the spacial volume
of that region. In the language of measure preserving systems, this means that the

2As an example of a Hamiltonian system, the reader can consider the Lorentz gas model commonly
used to describe the kinetic movements of gas molecules in a chamber.
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amount of time that an orbit x, T'x, T2x, T®x, ... of a typical point x € X spends in
a certain measurable set is proportional to the measure of that set. For example,
if A has measure 1/2 then, asymptotically, half of all n € N satisfy T"x € A. What
we have just described is in fact the conclusion of Birkhoff’s Pointwise Ergodic
Theorem, one of the fundamental results in ergodic theory (discussed in Chapter 4)
and equivalent to ergodicity.

Although Boltzmann initially conjectured that all naturally occurring systems
satisfy the ergodic hypothesis, it was shown by John von Neumann that this is
not the case, which is why today we distinguish between ergodic and non-ergodic
systems.

Definition 42 (Ergodicity). A measure preserving system (X, </, u,T) is ergodic if
for every set A € o,

T A=A = wA)=0o0r wA)=1.

Henceforth, let us call a set A € o strictly invariant if T"1A = A and almost
everywhere invariant if W(AAT 1A) = 0. Similarly, we call a measurable function
f: X — C strictly invariant if f(Tx) = f(x) for all x € X and almost everywhere
invariant if f(Tx) = f(x) for p-a.e. x € X.

The next proposition provides four equivalent characterizations of the notion of
ergodicity.

Proposition 43. Let (X,«/,u,T) be a measure preserving system. The following
are equivalent:
1) X,o,u,T) is ergodic;
(i) If A € o/ is almost everywhere invariant then either u(A) =0 or u(A)=1;
(iii) If f : X — C is measurable and strictly invariant then f is equal to a constant
almost everywhere.
(iv) If f: X — C is measurable and almost everywhere invariant then f is equal
to a constant almost everywhere.

Proof. The implication (ii) = (i) is trivial. The reverse implication (i) = (ii) follows
readily from the observation that if A € of is almost everywhere invariant then the
set A'=U%_, N2 T~/ A is strictly invariant and satisfies p(A) = u(A’).

The implications (iv) = (iii) = (i) also do not require a proof, since they are im-
mediate. To prove (iii) = (iv), let f: X — C be a measurable and almost everywhere
invariant function. Let Ar ={x € X : f(Tx) = f(x)} and note that A has full measure
and is almost everywhere invariant. Therefore the set A} =Um—o ﬂ;’; m TA  also
has full measure and is strictly invariant. Now the function

)= { f(), ifxeAl

0, otherwise

is strictly invariant and almost everywhere equal to f. By (iii) it follows that f’ is
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almost everywhere equal to a constant, which implies that f is almost everywhere
equal to a constant.

Finally, let us prove (i) = (iii). Suppose f: X — C is a measurable and strictly
invariant function. Recall that the essential supremum of a measurable function is
defined as

esssupf =infla eR: u(fx € X : f(x) > a} = 0)}.

For any a < esssupf consider the set A, ={x € X : f(x) < a} and observe that if f
is strictly invariant then A, is strictly invariant. Note that A, cannot have full
measure, because « is smaller than the essential supremum of . Therefore, in light
of (i), A, must have zero measure. But if A, has zero measure for all @ <esssupf
then this implies that f is almost everywhere equal to esssupf, finishing the
proof. O

Examples

Finite systems. Let X :={1,...,n} be a finite of cardinality n, let o = 22(X), and
let u be the normalized counting measure on X, that is,
|A]|

A)=—, VAcX.
B =X

Then (X, <, 1) is a finite probability space. A map 7': X — X preserves the measure
p if and only if it is a bijection from X to X. In other words, T is a permutation.
Moreover, T is ergodic if, and only if it has only one orbit, that is, for every x,y € X,
there exists % € N such that y = T*x. For instance, the cycle (12 ... n) constitutes
an ergodic transformation on {1,...,n}, since the invariant subsets are @ and X. On
the other hand, the permutation (1 2)(3 ... n) is not ergodic since the sets {1,2} and
{3,...,n} are invariant subsets which have measure % and "T"z respectively.

Circle rotations. Consider the probability space (X, </, 1) where X =[0,1), & is
the Borel o-algebra on X, and p is the Lebesgue measure. Given a € R, consider the
rotation by alpha T': X — X defined by Tx =x+ a mod 1. We already argued that
T is a measure preserving transformation. Now we can ask ourselves the following
question: Is T' ergodic?

As motivation, we can first consider the case when a = 1/4. Observe that the set
A =[0,1/8)u[1/4,3/8)uU[1/2,5/8) U[3/4,7/8) is T-invariant and satisfies u(A) = 1/2;
this implies that the transformation is not ergodic.

More generally, one can show that T' is ergodic if, and only if « is irrational.

Doubling map. Consider the probability space (X, <, u) where X =[0,1), & is
the Borel g-algebra on X, and p is the Lebesgue measure. This time, consider the
doubling map 7'x = 2x mod 1. It is left as an exercise to show that 7' is ergodic.
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More generally, this results also holds for non-integer values > 1. Even more
generally, one can show that this results still holds for the product probability space
[0,1)%, o ® of , u® ), and the map T x T'(x,y) =(px mod1,py mod 1).

Finally, using multi-dimensional Fourier analysis, we can find an analogous result
for toral endomorphisms over n-toruses T" = (R/Z)"”. We have already seen that any
A €GL,(Z) induces amap T4 : T* — T” preserving the Lebesgue measure induced
on T". A well-known result is that T'4 is ergodic if, and only if, no eigenvalue of A is
a root of unity.

Induced transformation. Let (X,</,u) be a probability spaceand T': X — X a
measure preserving transformation on it. Fix some A € & with u(A) > 0. In light of
Poincaré’s Recurrence Theorem, it follows that almost every x € A returns infinitely
often to A under the action of T'. For every x € A we define n(x) :=infln e N: T"x € A}
to be the first return time of x to A.

By Poincaré’s Recurrence Theorem, n(x) is finite for almost every x € A, hence,
without loss of generality, we can assume that we remove the set of measure zero
on which n(x) = oo and call the new set A. Consider the g-algebra on «/|4, which
consists of the restriction of «f on A, i.e /|4 :={BNA :B e «}. We now define p|s
to be the probability measure on A defined by :

w(B)
pla(B) 1A’ VBed|a.
Hence, (A, <f|4,1l4) is a probability space. Finally, define the map 74: A — A by
Tax = T"@x, for x € A. Then, this map is measurable with respect to «Z|4 and
is a measure preserving transformation. Moreover, if T is ergodic on (X, </, ),
then T4 is ergodic on (A, <f|a,1la). If we additionally add the assumption that
/.L(Uk>1 T"kA) =1, then the converse is also true (i.e, 74 ergodic implies 7" ergodic).






Chapter 2

Von Neumann’s Mean Ergodic
Theorem

2.1. Koopman Operator

Definition 44 (Koopman operator). Given a measure preserving transformation
T': X — X on a probability space (X, <, i), we call the linear operator Uy : L(X, </, 1) —
L%(X, 4, p) given by

Urf=feT
the associated Koopman operator.

The Koopman operator is well defined because T' preserves the measure u
and therefore composition with T' preserves measure-zero equivalency classes and
square-integrability.

Lemma 45. The operator Ur is an isometry, which means (Urf,Urg) =(f,g) for
all f,g e L3X, o, ). In particular, \Urf |2 = |2 for all f € LA(X, o, ).

Proof. Let f,g € L%(X, o, ). Since T preserves the measure, we have

(Urf,Urg) = fX £(Tx) g(T) dpx) = fX ) g@ du@ = (f,g),

which proves that Uy is isometric. O

29
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2.2. The Splitting J%,, ® ¢,

Henceforth, we denote by 74,y the space of almost everywhere invariant func-
tions in L%(X, o, ),

Hny =f € LAX, o, p): Urf = f}.
In view of Proposition 43, the system (X,«,u,T) is ergodic if and only if %,y
consists only of almost everywhere constant functions.

A function f € L%(X, o, ) is called a coboundary if it satisfies the coboundary
equation

f=g—-goT (2.2.1)

for some g € L%(X, </, ). Note that the set of all coboundaries forms a subspace of
L%(X, <, ), but not a closed subspace. Let Herg denote its closure,

Horg ={f e L2(X, o/, ) : f is a coboundary}. (2.2.2)

Note that %, and %, are both invariant subspaces of L%(X,«, 1) under Ur,
by which we mean that Ur. i, € 4y, and Ur g S Hrg. The first claim follows
from the observation that if f is almost everywhere invariant, then so is Urf, and
the second claim follows because if f is a coboundary then so is Urf.

The following result says that ;s is the orthocomplement of J#,y.

Theorem 46. We have S,y | Herg and iy & Horg = L2(X, o, ).

Proof. For notational convenience, let us write € for the set {f € L2(X,of 1) ¢
f is a coboundary}. It suffices to show €+ = Sy, because this implies that the
closure of & coincides with the orthocomplement of .7%,,, which by definition equals
Harg. Let us first show €+ < 94, Suppose f € €+, which simply means (f,g) =0
for all g € €. Then we have

If —UrfI? IF 12+ 1Urf 112 — 2Re(f, Urf)
= 2lfI2-2Re(f,Urf)
= 2(f,fY-2Re(f,U:f)

= 2Re(f,f-U:f)=0.

Hence f € 5%,y as was to be shown.

To prove the reverse inclusion %, € €+, we need to show (f,h) =0 for all f € ¥
and h € F4,y. If f € € then, by the definition of a coboundary, there exists some
ge L%(X, o, ) for which f = g—Urg holds. Hence for any & € 5%,, we have
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showing that & € ¥+ and finishing the proof. O

The following is an immediate corollary of Theorem 46.

Corollary 47. For every f € L3(X, o/ ,11) there exist unique finy € Hny and ferg €
FHerg such that

f = finv + ferg- (2.2.3)

Note that fi,v in (2.2.3) is exactly the orthogonal projection of f onto the space
Fny and, likewise, ferg is the orthogonal projection of f onto the space 5%;g.

2.3. The Mean Ergodic Theorem

Here is Von Neumann’s Mean Ergodic Theorem.

Mean Ergodic Theorem (General Case). Let (X,</,u,T) be a measure preserving
system. For every f € L3(X,«, 1) we have

. 1A .
J%Er;oﬁ ;;) Upf=finy in L?-norm, (2.3.1)

where finy is the orthogonal projection of f onto .7,y as guaranteed by (2.2.3).

Proof. According to (2.2.3) we can write f = finy + ferg. Hence

1 N1 . 1 N-1 N 1 N-1 .
_ZT[ r;)UTf = (Nn;OUTfinV)"'(N’;)UTferg)-

Clearly, we have 1%, Zﬁ:’:ol Uz finy = finv, because finy is invariant under Ur. Thus, to

finish the proof of (2.3.1), it suffices to show

1 N-1
lim = Y UPferg=0  in L%-norm (2.3.2)

for all ferg € Hirg. In view of (2.2.2), we can assume that ferg is a coboundary, i.e.,
there exists g € L2(X, </, ) such that ferg=8 —Urg. Butif forg = g —Urg then the
sum in (2.3.2) is telescoping, yielding

1 N-1 Ur —-UN
AT ZU;ferg:—g Tg-
N = N

Since Urg — U:,A,’ & has norm at most 2||g||; 2, we obtain

1= 2ligllg2
||1V nZ=0 UTferg 12 < N
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and (2.3.2) follows. O

Mean Ergodic Theorem (Ergodic Case). Let (X, </,u,T) be an ergodic measure
preserving system. Then for every f € L2(X, <, ) we have

) 1 N-1 n
1&1_1’1;017/, nzonsz f du (2.3.3)

in L2-norm.

Proof. In light of (2.3.1), it suffices to show that if the system (X, o, u,T') is ergodic
then finy = [f du. So assume (X, o, u,T) is ergodic and let f € L%(X, o, 1) be
aritrary. According to Corollary 47, there exist unique finy € #pny and ferg € Horg
such that f = finy + ferg. By definition, fiyy is an almost everywhere invariant
function. Therefore, by part (iv) of Proposition 43, fi,v is almost everywhere equal
to a constant, which we denote by c. To finish the proof of (2.3.3), it only remains
to show that [f du=c. Let 1 denote the function that is constant equal to 1
everywhere. Then

ff du = <f,1) = {finv, 1) + {ferg, 1) = ¢+ {ferg, 1).

Since 1 is invariant under the transformation T' and ferg is orthogonal to all invari-
ant functions, we have (ferg, 1) = 0, showing that [ f du = ¢ as desired. O

2.4. Uniform Mean Ergodic Theorem

The mean ergodic theorem possesses a “uniform” version where the Cesaro
averages limy .o 1%, Zf:’:ol are replaced by the more general uniform Cesaro averages
limy-p—o00 ﬁ Zivz"ﬂll. More precisely, we say that the uniform Cesaro average of a

sequence (u,),en in a Hilbert space exists and equals u, and write

Uniform Mean Ergodic Theorem. Let (X,</,u,T) be a measure preserving
system. For every f € L2(X,«, 1) we have

. 1 N .
N—llllln—l> “N-M n=ZM Uzf = finy in L%-norm, (2.4.1)
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where fi,y is the orthogonal projection of f onto 7#;,, as guaranteed by (2.2.3).

Proof. The proof of the Uniform Mean Ergodic Theorem is essentially identical
to the proof of Mean Ergodic Theorem. One needs to replace all occurrences of
Cesaro averages with uniform Cesaro averages, but otherwise the argument stays
the same. O

2.5. Consequences of the Mean Ergodic Theorem

Corollary 48. A measure preserving system (X,</,u,T) is ergodic if and only if for
every A,Be o,

N-1
lim 1 Y T ™ANnB)=wA)uB). (2.5.1)
N—’OONn=0

Proof. If the system is not ergodic, then by definition there exists a strictly invariant
set A € 8 with 0 < g(A) < 1. Taking B = X\A, we see that pu(A)u(B) > 0 but
T ™A nB = @ for every n, contradicting (2.5.1).

If the system is ergodic then we proceed as follows. First observe that 17-n4 =
14oT" =Uy14. This implies ((T™"ANnB) = fU,f,‘,lA -1 dp and hence

1 N1 1 N-1

lim — TT"AnB)=li — ) UZ1a|-1p dp.

Jm gy ST AnB) = tim (7 X Ufta) 1 du

By ergodicity, it follows from the Mean Ergodic Theorem that 1%. Zflvz"ol Urla— uA)
as N — oo in L2-norm. Since norm convergence in L? implies weak convergence in
L2, we get

1 N-1
tim [ (3 UpLa) 1 du= [ wa)- 15 du = pa)u(d),
n=0

N—oo

completing the proof. O

Setting A = B in Corollary 48 we see that, in ergodic systems, one can improve
Poincaré’s Recurrence Theorem by finding n € N such that u(T"""AnNA) is arbitrarily
close to u%(A). One can in fact obtain a stronger version of this fact, which also
applies to non-ergodic systems.

Definition 49. A set S =N is called syndetic if it has bounded gaps. More precisely,
S is syndetic if there exists L € N such that every interval {n,n+1,...,n+ L —1} of
length L contains some element of S.
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Khintchine’s recurrence theorem. Let (X,%,u,T) be a measure preserving
system, let A € 9B and let € > 0. Then there exists n € N such that y(AnT"A)>
u2(A) - €, and moreover the set

{neN: wANT "A)> u*(A)-¢}
is syndetic.

The proof of Khintchine’s recurrence theorem is covered in the exercise class.



Chapter 3

Uniform Distribution of Sequences

3.1. Uniform Distribution Modulo 1

Definition 50. The density (sometimes also called the natural density or the asymp-
totic density) of a set A =N is defined as
|An{l,...,N}|

N

whenever this limit exists. If this limit does not exist then we say that the density
of A does not exist.

A= fim,

Here are some examples of subsets of the natural numbers and their respective
densities:

e dN)=1;

¢ d(2N)=0.5;

e d(U-free) = ”%, where [I-free denotes the set of squarefree numbers;

¢ d(P) =0, where P is the set of prime numbers.

Given a real number x we call |x| = max{n € Z : n < x} the integer part of x and
{x} = x— |x] the fractional part of x. Just as the interval [0, 1) is often identified with
the (1-dimensional) torus T = R/Z, the map x — {x}, which sends a number to its
fractional part, is often identified with the natural projection of R onto T given by
x+— x mod 1 (sometimes also written as x — x mod Z).

Definition 51. We say a sequence of real numbers (x,),cN is uniformly distributed
mod 1 if for every 0 < a < b < 1 we have

. {1<n<N:{x,}ela,b)}
lim
N—oo N

Remark 52. A sequence (x,),en is uniformly distributed mod 1 if and only if for all
0<a<b<1ltheset{neZ:{x,}€la,b)} has density (b —a).

=(b-a). 3.1.1)

35
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3.2. Weyl’s Criterion

The following result gives necessary and sufficient conditions for a sequence to
be uniformly distributed mod 1. We use e(x) to abbreviate 27,

Weyl’s Equidistribution Criterion. Let (x,),cn be a sequence of real numbers.
The following are equivalent:

(1) (xXp)neN is uniformly distributed mod 1;

(ii) For any continuous function f: [0,1] — C,

Jim N Z F(@ah) = f £(x) da

(iii) For every k € Z\{0},

1 N
lim — kx,)=0.
grgoNn;e( Xn)

Proof of (i) = (ii). Suppose (x,)ren is uniformly distributed mod 1. Letting 1, »)
denote the indicator function of the interval [a.b), we can rewrite (3.1.1) as

1 ¥
Jim zTr,; 1ia,5)({xn}) = (b —a). (3.2.1)

Let f:[0,1] — C be continuous. Since continuous functions on compact sets are
uniformly continuous, for every € > 0 there exists M € N such that for all x,y €[0,1]
we have

x-y1< 34 = If@-f@)I<e. (3.2.2)
Letyj= 1{—,_,',j=0,1,...,M, and define

M-1
fM(x) = Z f(yj)l[yj,yj+1)(x).
Jj=0
It follows from (3.2.2) that for any x € [0,1] we have |f(x) — fu(x)| < €. In particular,
If ({xn}) — Fur({xn D] < € for all n € N. Therefore
Z fllxnd) — = Z JES))

lim sup <e. 3.2.3)

N—o00 |N
Using (3.2.1) we see that

Jim Z Fuxn}) = Zf(y,)(y,+1 ¥5)-

j=0
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Since the right hand side of the above equation is a (left) Riemann sum of f over
the interval [0, 1] with respect to the partition induced by yo, y1,...,ym, we conclude
that

1 N M 1
lim tim 3 fulenh = Jim j;of(yj)<yj+1—yj>= fo £(x) dx.

M—ooN—o0

Therefore, taking the limit as M — oo in (3.2.3) yields

i n < .

Since € > 0 was chosen arbitrarily, this shows that the limit of 1%, Zf:f:l f(x,}) as
N — oo exists and equals fol f(x) dx. O

Proof of (ii)) = (iii). Observe that the function x — e(kx) is continuous and for
k # 0 we have fol e(kx) dx = 0. Since e(k{x,}) = e(kx,) for all n, we see that (iii)
follows from (ii) by choosing f(x) = e(kx). O

For the proof of the implication (iii) = (i) we rely on a classical result from
analysis. Given a topological space X let C(X) denote the space of all continuous
functions from X to C and let ||flloo = sup,cx |f(x)] be the supremum norm.

Stone-Weierstrass Theorem. Suppose X is a compact Hausdorff space and < is
a subalgebra of C(X) closed under complex conjugation and containing a non-zero
constant function. Then & is dense in C(X) (with respect to the supremum norm) if
and only if it separates points.

By a trigonometric polynomial on [0,1] we mean any function of the form
x—cie(kix)+...+cpe(kyx)

for /eN, c1,...,co€C, and k1,...,ks € Z. The following is a well-known corollary of
the Stone-Weierstrass Theorem.

Corollary 53. Any continuous function f : [0,1] — C satisfying f(0) = f(1) can be
approximated in supremum norm by trigonometric polynomials.

Proof. By identifying the unit interval [0,1) with the torus T = R/Z, we can iden-
tify any continuous function f: [0,1] — C satisfying f(0) = (1) with a continuous
function on T. In particular, we can view trigonometric polynomials as a functions
onT.

Note that the set of all trigonometric polynomials is closed under pointwise
addition, pointwise multiplication, complex conjugation, and scalar multiplication.
Therefore, it forms a subalgebra of C(T) closed under complex conjugation. This
subalgebra also contains all non-zero constant functions and separates points.
Indeed, the former is obvious and the latter follows from the observation that the
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function x — e(x) itself already separates points in T, because for any x,y € [0,1)
with x # y one has e(x) # e(y). It thus follows from the Stone-Weierstrass Theorem
that any continuous function on T can be apprximated in supremum norm by
trigonometric polynomials. Consequently, any continuous function f:[0,1] — C
satisfying f(0) = f(1) can be approximated in supremum norm by trigonometric
polynomials. O

Proof of (iii) = (i). It suffices to show that for any 0 < a < b < 1 one has
.. JM1<n<N:{xy}ela,bd)}
liminf
N—o0o N
Indeed, assuming that (3.2.4) holds, we have
{1SnSN:{aptela, b, HISnSN:ixpiel0,0)l H1SnSN:ixa}elb, DY

= (b-a). (3.2.4)

N T N N
and hence
<n< :
limsup LS \Nléx”}e .0 G—0)=(1-b)=(B-a). (3.2.5)
N—oo

Then (3.2.4) and (3.2.5) together prove that (x,),en is uniformly distributed mod 1.
For the proof of (3.2.4), let € > 0 be arbitrary. By approximating 1, 4)(x) from
below, we can find a continuous function f: [0,1] — [0, 1] supported on [a,b) and with
fol f(x) dx > (b —a)—e. Without loss of generality, we can assume that £(0) = f(1) =0.
Using Corollary 53, we can now find a trigonometric polynomial P(x) = cie(k1x) +
..+ cpe(kyx) such that ||f — Pl < €. It follows that

| fo ' F(x) dx— fo ' P) dx| <e (3.2.6)
as well as
\ N : Z flxnh) - — Z P(x,)|<e, VNeN. 3.2.7)
Using 1 4)(x) > f(x) for all x € [0, 1], we have
liminf L SP SV wnl€la, b nf— Z F{xad). (3.2.8)

N—oo N
Next, it follows from (iii) that for all k€ Z and c € C,
¢, ifk=0
lim — k ’ ’
: Z celkiznl) = {O, otherwise.
On the other hand, a straightforward calculation reveals

fce(kx) dy = {c, ifk=0,

0, otherwise.
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This shows that for all k€ Z and c€ C,
lim — Z ce(k{x,}) = fce(kx) dx.

—’00

Since P(x) =cie(k1x)+...+cee(kyx), it also follows that

]\}1_120— Z P(x,) = f P(x) dx. (3.2.9)
Putting together (3.2.7) and (3.2.9), we get
1 N 1
[iming % 3 ftanb- [ P s <e.
Combining this with (3.2.7) gives
1 N 1
timin - 3 (e > fo £(x) dx—2e. (3.2.10)

Finally, using fol f(x) dx > (b —a) —¢, it follows from (3.2.8) and (3.2.10) that
H1<n <N:{x,}ela,bd)}|

.. S (b—a)—3e.
1}\1/_2 gf N >(Mb-a)-3¢
Given that € > 0 can be made arbitrarily small, (3.2.4) follows. O

The following theorem was proved in 1909 and 1910 separately by Hermann
Weyl, Waclaw Sierpinski and Piers Bohl, and variants of it continue to be studied to
this day.

Weyl’s Linear Equidistribution Theorem. For any irrational number a the
sequence (na),cN is uniformly distributed mod 1.

Proof. In view of Weyl’s Equidistribution Criterion, it suffices to show that for every
k € Z\{0} we have

1 N
J\;Elgoﬁgle(kna)=0.

Taking e(ka) = A, we see that e(kna) = A" and hence NZ _1e(kna) = ZN A,
Note also that ka is not an integer, because «a is irrational, and hence 1 ;é 1. Slnce
Zf:’:l A" is a geometric sum, it can be calculated explicitly as

ze-ali)
Therefore
N N
|1%Ze(kn“)| |Nzﬂn |N(1 : )|\ |12 Al

n=1
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Since the rightmost expression in the above equation converges to zero as N — oo,
we are done. O

3.3. Uniform Distribution in Metric Spaces

Recall, a metric space is a pair (X,dx) where X isaset and dx: X x X — [0,00)
is a function satisfying the following axioms of a metric:

® (Positivity). x#y < dx(x,y)>0.

* (Symmetry). dx(x,y)=dx(y,x).

® (Triangle inequality). dx(x,z) <dx(x,y)+dx(y,2).
The Borel g-algebra, denoted by $Bx, is the smallest g-algebra on X containing all
open balls in X. If X is a compact metric space then any Borel probability measure
pon X (i.e., any probability measure defined on the Borel o-algebra %8x) is a Radon
measure, which means for all A € 8x we have

(inner regularity) H(A) = sup{u(K) : K < A compact},
(outer regularity) wA) =inf{u(U) : U 2 A open}.

The same statement is true if instead of a compact metric space one has a locally
compact and o-compact Hausdorff space, but for the purposes of this course it is
enough to restrict our attention to compact metric spaces.

Definition 54. Let u be a Borel probability measure on a compact metric space. A
sequence (x,),en of points in X are said to be uniformly distributed according to p
if for every continuous function f: X — C one has

. 1 X
Jim 3 flan)= | du

A (Borel measurable) function f: X — C is called Riemann integrable with
respect to p if the set of discontinuities of f has zero measure with respect to p.
A (Borel) set A € X is called Jordan measurable with respect to p if its boundary
0A = A\A° has zero measure with respect to . It follows right away from the
definition that a set is Jordan measurable if and only if its indicator function is
Riemann integrable.

The following proposition can be viewed as a variant of Weyl’s Equidistribution
Criterion for arbitrary compact metric spaces. The idea behind the proof is also
similar and omitted from these notes.

Proposition 55. Let u be a Borel probability measure on a compact metric space
(x,dx) and (x,)nen a sequence of points in X. The following are equivalent:
(1) (xp)nen is uniformly distributed according to p;
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(ii) For any Riemann integrable function f: X — C,
N

.1
J&ﬂoﬁglf(xn) = fo du;
(iii) For every Jordan measurable set A € X

d({neN:x, € A} = u(A).

Examples

Prime Numbers. The Prime Number Theorem states that

<N :p prime}| ~ .
The prime number theorem in arithmetic progressions, also known as Dirichelt’s
prime number theorem, asserts that for any coprime positive integers g,r € N one
has

1 N
9(q) log(N)’
where ¢ is Euler’s totient function. It follows that the sequence of prime numbers
appears with equal frequency in all coprime residue classes modulo g. In other
words, if p1 < p2 < p3 < ... is an increasing enumeration of the primes then the se-

quence (p, mod q@)nen is uniformly distributed according to the normalized counting
measure on (Z/qZ)* ={0<r<gq:gecd(q,r)=1}.

{p<N:p=rmodgq, p prime}| ~






Chapter 4

Birkhoff’s Pointwise Ergodic
Theorem

The Ergodic Theorems, both mean and pointwise, embody one the main principles
of ergodic theory, specifically that time-averages are equal to space-averages:

lim = Z f(T”x) f f dp.

~

space averages
time— averages

4.1. The Maximal Inequality and the Maximal
Ergodic Theorem

In measure theory, Markov’s inequality states that if (X,</,u) is a measure
space, f : X — R a measurable function, and £ > 0 then

p{xeX:If@)l>e}) < flfl du.

Applying Markov’s inequality to the ergodic average an"o f(T™x) and using the
triangle inequality yields

1 N-1 n 1
y({xeX:|N_nZ=0f(T x)| >e}) < Eflfl dp. “.1.1)
The following results, called the Maximal Ergodic Theorem, provides a signifi-

cant strengthening of (4.1.1) and can be viewed as a uniform version of Markov’s
inequality for ergodic averages.

43
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Maximal Ergodic Theorem. Let (X,</,u,T) be a measure preserving system.
For any real-valued f € L'(X,«, ) and € >0 we have

u({x e X :sup

N>1|N Z f(T"x)‘ >£ < %flfl dp. 4.1.2)

The proof of the Maximal Ergodic Theorem hinges on a technical result called

the maximal inequality.
Maximal Inequality. Let (X,</,u,T) be a measure preserving system. For f €
LY(X, 4, ) a real-valued function define Sy = 0 and

m-1

Sm(x) = Z f(T™x), m21,

n=0

and let Fn(x) = maxo<m<N Sm(x) for all x € X. Then

f fdu>0
{xeX . Fn(x)>0}

forall N > 1.

Proof. First, observe that F(x) > S,,(x) for all m =0,1,...,N, and therefore
Fn(Tx)+ f(x) 2 Sm(Tx) + f(x) = Spp41(x).
Hence

Fn(Tx)+ f(x) > 1maxNSm(x) VxeX. 4.1.3)

\m\

Since S¢ =0 we have

maxi<m<N Sm(x), if Fy(x)>0,
0, otherwise.

Fn(x) = {

So if P ={x € X : Fn(x) > 0} then (4.1.3) implies
Fn(Tx)+ f(x) > Fn(x), VxeP.
Thus,

[ £ du> [ Py du- [ Fcra) du
P P P
= f Fn(x)du —f Fn(Tx) du (since Fn(x) =0 for x ¢ P)
X P
> f Fy(x) d/.t—f Fn(Tx)dpy  (since Fiy(x) > 0 for all x € X)
X X

=0. (since T' is measure-preserving)
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Proof of the Maximal Ergodic Theorem. By decomposing f into f = f + f-, where
f+=F x>0 and f_ = f - 1ix.r(x)<0}, and treating each component separately, we
can assume without loss of generality that f is non-negative. By applying the
Maximal Inequality to the function f(x) — € we obtain

f F@)—edu>0 4.1.4)
Py

where Py ={x € X :sup;<y<y 1%, ZN="1 f(T"x) > €}. Let

P= {xeX JS\/}EN Z f(T"x)>8}

and note that P = UpenPay. Thus (4.1.4) and the dominated convergence theorem
imply

f fx)—edp>0. (4.1.5)
P

From (4.1.5) we deduce that [, f du > eu(P). Since [pf du < [If| du, the claim
follows. 0

4.2. The Pointwise Ergodic Theorem

Pointwise Ergodic Theorem (General Case). Let (X,</,u,T) be a measure pre-
serving system. For every f € L2(X, </, 1) we have

1\171m — Z f(T"x) = finy(x) for p-a.e. xe X,

where finy is as guaranteed by (2.2.3).

Proof. Let £ denote the space of all real-valued f € L%(X, «, u) for which the limit

n
ﬁi—ZﬂTm
exists for y-almost every x € X. Our goal is to show that £ = L2(X, <, ).

Clearly, £ is closed under finite linear combinations and contains 74,,. Thus,
to conclude £ = L%(X, </, p) it suffices to show FHerg € £, because FHiny & Hirg =
L%(X, s/, ) by Theorem 46. Let f be an arbitrary element in Frg. Fix €>0, and
let » = g —goT be a coboundary with g € L°(X,«/, ) and [|f —h| du < €2, which is
possible because coboundaries are dense in ;. Applying the Maximal Ergodic
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Theorem to the function f — A yields

u({x €X :sup

N>1|N Z f(T") - M(T"0)| > e}) < %flf—hl du.

Using [|f —h| du < €2 and replacing supy>; with limsupy_., yields
1 N-1
.13 _ n _ n
u({rex: 11?30%;)‘ ~ 7;) £(T%) - h(T x)| >e}) <e. “.2.1)

Since h = g—goT is a coboundary with g € L®°(X, </, u), its ergodic average is
telescoping almost everywhere, giving

) 1N—1 "
I\ITEI;o]Tf,;)h(T x)=0, foru—a.e xeX.

So (4.2.1) is equivalent to
1 N-1
eX:li — T x)| > LEe 4.2.2
freX timeupl g 3 ] >ef) < 22
Since € was arbitrary, this implies that
11m = Z f(T"x) =0, fory—a.e.xeX,

proving that f € £ as desired. O

Pointwise Ergodic Theorem (Ergodic Case). Let (X, </, u,T) be an ergodic mea-
sure preserving system. Then for every f € L%(X, <, 1),

N-1

o 1 n _
Jx}l—lgoﬁ,;)f(T x)—ff du, forp-ae xeX.

4.3. Consequences of the Pointwise Ergodic
Theorem

Given a measure preserving system (X,</,u,T'), a set A € &/, and a point x € X,
we call

R(x,A)={neN:T"xe A}

the set of visits of x to A. It describes the times at which the orbit of the point x
under the transformation 7" “visits” the set A.

The following result is a consequence of the Pointwise Ergodic Theorem. It tells
us that in ergodic systems generic points visit sets with the right frequency.
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Corollary 56. Let (X,«/,u,T) be a measure preserving system. The following are
equivalent.
(1) (X,o,u,T) is ergodic.
(ii) For every A < «f with u(A)> 0 and almost every x € X the set of visits R(x,A)
is non-empty.
(iii) For every A < &/ and almost every x € X the set of visits R(x,A) has density
u(A), ie.,
H1<n<N:T"xe A}

1\}1_120 N = wA).

Proof. The implication (i) = (iii) follows directly from the Pointwise Ergodic Theo-
rem. The implication (iii) = (ii) is immediate because sets with positive density are
always non-empty. Finally, we prove (ii) = (i) by contradiction. Assume (X, ./, u,T')
is not ergodic, which means there exists A € «f that is invariant under 7 and sat-
isfies 0 < u(A) < 1. Since the complement X\A has positive measure, it follows
from (ii) that there exists a set X' € X of full measure such that R(x,X\A) # @
for all x € X'. Since A has positive measure, the intersection X’ N A is non-empty.
In particular, there exists some xo € X' N A. Since xo € X' we have R(x,X\A) # @,
but since xg € A and A is invariant, we have T"xy € A for all n € N and hence
R(x,X\A)=@. We have arrived at a contradiction. O

Corollary 57. Let (X,dx) be a compact metric space, u a Borel probability measure
on X, and T': X — X an ergodic measure preserving transformation. Then for p-
almost every x € X the orbit (T"x),en is uniformly distributed according to u (see
Definition 54).

Proof. Let f1,f2,fs,...€ C(X) be a sequence of continuous functions on X such that
{f; : i €N} is a dense subset of C(X) with respect to the supremum norm |.|loo. By
thePointwise Ergodic Theorem, for every i € N there exists a set of full measure
X; € X such that for all x € X;,

Z\}1m = Z f,(T"x):ffi dp. (4.3.1)

Let X’ =N;enX; and note that X' has full measure. Since (4.3.1) holds for all x € X'
and since any continuous function f € C(X) can be uniformly approximated by a
subsequence of (f;);en, We conclude that

1N1 n
Jim & 3 T = [ du

holds for all f € C(X) and all x € X’. This proves that the orbit of any point in X’ is
uniformly distributed according to pu. O
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4.4. Borel’s Theorem on Normal Numbers

Let p be an integer greater than or equal to 2. Recall that any real number
x €[0,1) possesses a base-p digit expansion,

(o] .
x=Zdip_l, di,dg,...€{0,1,...,p—1}.
i=1

In this setting, the nubmers d1,dq,... are called the base-p digits of x. It is natural
to ask about the frequency with which each digits appears in the expansion of x. If
all possible finite combinations of digits appear with the expected frequency in the
expansion of x then x is called a ‘normal number’.

Definition 58. A number x =322, d; p~t is called normal in base-p if for all k > 1
and all ¢q,...,c €1{0,1,...,p — 1} the set

{fneNuO:d,+1=c1,...,dnsr =Cg}
has density p~*.

Borel’s Theorem on Normal Numbers. For any p > 2, Lebesgue-almost every
x €[0,1) is normal in base-p.

Proof. Given x€[0,1) let d;(x) denote the i-th digit of x in base-p, such that
m .
x=) dix)p~".
i=1

Consider the set C ={x€ X :d1(x) =c1,...,d,+r(x) = cg}. A straightforward calcula-
tion reveals that the Lebesgue measure of C equals p~*. Also, note that the map
T'(x) = px mod 1 is an ergodic Lebesgue-measure-preserving transformation on [0, 1).
Hence, by the Pointwise Ergodic Theorem we have for almost-every x € [0,1) that
N-1

Y 1c(T"x) = p~*.

n=0

We leave it to the reader to check that

lim —
N1—1>roloN

1c(T"x)=1 <= dp41=c1,...,dnsk =Cp,

which implies that limpy_.o 1%. Zf,v;ol 1c(T™x) is precisely the natural density of the
set {(neNuUO0:d,+1=c1,...,dn+t = cp}, finishing the proof. O
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4.5. Continued Fractions and the Gauss-Map

4.5.1. Continued Fractions

Definition 59. A finite continued fraction is an expression of the form

1

1
1

: 1
an—l*’ﬁ

lag;a1,as9,...,an]=ag+

ai+
1 az+..

withao€Z and a1,...a, €N.

Every rational number can be represented as a continued fraction. However,
this representation is not unique, because for a, > 2 we have

1 1
=ag+
i a+

%n-1tgn,

1

1

. 1
ap-1+
"1 @n-0+}

as+t..

and hence [ag;a1,a2,...,an-1,a,] and [ag;a1,a2,...,an-1,a, —1,1] are two distinct
representations of the same rational number. Aside from this modification at the
tail of the continued fraction, every rational number has a unique representation.
Usually the first, shorter expansion is chosen as the canonical representation of a
rational number.

The continued fraction expansion of a rational number can be computed using
Euclid’s algorithm, as illustrated by the following example.

Example 60. Consider the rational number *1’—;. Applying Euclid’s algorithm to the
numbers 97 and 17 we obtain

97=5-17+12

17=1-12+5

12=2-5+2
5=2-2+1
2=2-1+0,

which proves that 97 and 17 are coprime. Using the sequence of quotients obtained
from the algorithm, we can write down the (canonical) finite continued fraction
expansion of % as

97 1
2 =151,2,2,21 =5+ ————
17 [’ b b 7] 1+ 1
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Definition 61. A (simple) continued fraction is an expression of the form

(4.5.1)

[a@g;a1,a2,a3,...]1=a¢+

where ag € Z and a1,a2,a3,... € N.

As we will learn in this section, any continued fraction corresponds to a unique
irrational number, and any irrational number possesses a unique continued fraction
expansion. For example:

* v/2=1[1;2,2,2,2,...]. The expansion is periodic with period 1. A well-known
theorem (which we won’t prove in this course) asserts that a number has a
periodic continued fraction expansion if and only if it is a quadratic surd?.

e ¢=[=[2;1,2,1,1,4,1,1,6,1,1,8,1,...,1,2n,1,...]1, where e is Euler’s constant.
It follows an almost periodic structure, the pattern repeats with a period of 3
except that 2 is added to the intermediate value in each cycle.

e 1=[3;7,15,1,292,1,1,1,2,1,3,1,...]. No pattern has been observed in the
continued fraction expansion of 7.

* ¢=[1;1,1,1,1,1,1,1,1,1,1,1,...], where ¢ = 1+2—‘/5 denotes the golden ration. It
is often regarded as the “most” irrational number, since its continued fraction
expansion implies that it is the most difficult to approximate by rational
numbers.

Definition 62. A finite truncation of a continued fraction

1 Pn
[ao;a1,as,...,anl=a0+ N T =—
a1 ag+.. L In

%n-1tay

is called the n-th convergent to [ag;a1,a2,as,...].

Proposition 63. Let [ag;a1,a2,a3,...] be a continued fraction and let a, = fl’—:
denote its n-th convergent (with p, and g, coprime).
(i) Foralln>1,
Pn+1=0Cn+1Pn + Pn-1,
dn+1=Cp+19n +4qn-1,
(=1)" =Pn+1qn —Pnqn+1.
(ii)) The limit a = lim,,_.o, @, =lim,_.o fl’—: exists, is irrational, and satisfies
1
|a _Pnl o . (4.5.2)
qn dndn+1

(iii) One has ap<ags<as<...<a<...<as<ag<ai.

1A quadratic surd (often also called a quadratic irrational) is any number that is a root of a
quadratic polynomial with rational coefficients that is irreducible over the rational numbers.
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Proof of (i). We proceed by induction on n. Note that pg =ag, go=1, p1=a¢a1+1
and g1 =a1. So if we set p_1 =1 and g_; =0 then the formulas hold for n = 0.
Now suppose the formulas have already been verified some n > 0. Define
P =0@ns2Pn+1+Pn and § = @n12qn+1 + qn; our goal is to show (5,§) = (Pr+2,qn+2)
and pqn+1—Pn+1d = (-1)**1. We have
Pn+2
dn+2

= [ao;ala' .. 7an+17an+2] = [ao;ala' --,Qpt1t+ 1/an+2]

(an+1 + 1/an+2)pn +Pn-1

(an+1 + 1/an+2)Qn +Qqn-1
_ an+2(an+1pn +pn—1) +Pn
An+2 (an+IQn + Qn—l) +qn

Q| ™

Also,

P9n+1—Pn+1d =Pnqn+1—Pn+1qdn = (—1)n+1
which proves that g and § are coprime. Thus (5,§) = (pr+2,qn+2) as desired. O

Proof of (ii). Note that p,+19, —pPnqn+1 =(—1)" implies

Pn _Pn-1, (DM
dn d49n-1 9nqn-1

and hence

. DPn & (_1)j+1
a=lim —=a¢p+ ,
=0 gp j=149j9j-1

which is an absolutely convergent series because g, > 2" 2"2, Moreover,
[eS) (_1)j+1 1
= | <
j=n+1 9j9j-1 dnqn+1

a—_
dn

| DPn

as desired.

It remains to show that a is irrational. Suppose «a is rational, i.e., @ = ¢ for some
a €Z and b € N. Then (4.5.2) implies |g,a —bp,| — 0 as n — co. Since qp,a—bp,
is an integer, we must have q,a = bp, for all but finitely many n € N, and hence
al/b = p,/q, for all but finitely many n € N. This contradicts the facts that p,, and
qn are coprime, and ¢, — oo as n — oo. O

Proof of (iii). The fact that ag<az<as<...<a<...<as<asg< aj follows from

DPn & (_1)j+1
—=ap+
dn j=14;9;-1
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and the fact that the terms in this sum are decreasing and have alternating signs.
0

Proposition 64. Every irrational number has an unique continued fraction expen-
sion.

Proof. We first show existence by constructing a continued fraction expansion for
1

a inductively: xo = a, a, = |x,], Xp+1 = p—— Vn € N. This is well defined because
Xn, —an > 0 since if x, is an integer for some n, then @ must be rational. The
inequality 0 < x, —a, < 1 implies that x,+1 > 1, so a,+1 > 1 for n e NU{0}. By
construction, @ =[ag;a1,a2,as,...] This shows existence.

We now show uniqueness. Suppose that there exist a continued fraction expan-
sion [ay;a,a5,as,...] corresponding to a different than the one constructed above.
Let m be the first index such that they differ, that is a,, #a,,. Then f=x,, —an is
either negative or greater than 1. But 8 =[0;em+1,8m+2,8m+3,...1€(0,1). This is a
contradiction and this proves the uniqueness of the continued fraction expansion

for a. O

Definition 65. A fraction p/q is called a best approximate to a real number a if for
any other fraction a/b with denominator less than or equal to q one has

lga—pl < [ba—al.

Note that if p/q is a best approximate to a then, in particular,
2<%
a—-—|<|la—-
| q b

for any other fraction a/b with denominator less than or equal to q.

Example 66. Let a > 0 be an irrational number and consider the line y = ax. By
definition, the points on the integer lattice that are closest to the graph of this line
are the best approximates to a@. It turns out that these points are in one-to-one
correspondence with the convergents to the continued fraction expansion of a.

For example, if @ = 1/v/2 then its continued fraction expansion is given by
[0;1,2,2,2,2,...] and the corresponding convergents are %, %,g,%,.... In Fig. 4.1,
we see the graph of the function y = x/v/2 and the lattice points closest to it, which
are (1,1), (2,3), (5,7), (12,17), and so forth. Notice that these points alternate
between approximating the graph from above and from below, which is the geometric
counterpart to property (iii) in Proposition 63.

Theorem 67. Let a be irrational. The best approximates to a are exactly the
convergents of the continued fraction expansion of c.

The proof of Theorem 67 is omitted.
Now that we have defined continued fractions, we will focus on the properties of
their expansions. In the next subsection we will prove the following theorem.
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(5,7)

(2,3)

(1,1)
®

Figure 4.1: Graph of y = ax for a = 1/v2.

Theorem 68. Each of the following properties holds for Lebesgue almost every real
number x =[ag;a1,as,...1:
(i) The digit n appears in the expansion [a¢;a1,a2,...]1 of x with frequency
2log(n + 1) —log(n) —log(n + 2)
log2 '

ajtag+...+a, _ 0o

(i) limp_.oo 2792¢

veey e 2\log(%)/log(2)
(iii) lim,_..(@1a2-... a,)™ = C where C = HZ‘;I(gf;PZ)) .

(iv) If p,/q, are the convergents to x =[ag;a1,a2,...] then

2

" 6log2’
In particular, this means |x — p,/q,| = O(e™*"*) for all 0 < A < n%/6log2.

.1 Pn
lim —log|x — —
n—oon qn

4.5.2. Gauss map and Gauss measure

Our next goal is to introduce a dynamical approach to the theory of continued
fractions. The Gaufl map is a map T': [0,1) — [0,1) defined via

1 .
T(x) = ; mod 1, %fx;éO,
0, ifx=0.
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There is an explicit Borel probability measure on [0,1) for which 7' is measure
preserving, called the Gauf measure, defined as

wB) = f — dx, for all Borel-measurable B <[0,1).
log2Jp1+x

Proposition 69. The Gaul3 map preserves the Gaul3 measure.

Proof. Tt suffices to show p(T~1[0,s]) = u([0,s]) for all s > 0 because intervals of this
form generate the Borel o-algebra on [0,1). Note that

T0,51=0)Ulxe (0, D: 1 - [1] <= U [ 54, 3]
keN
is a disjoint union. It follows that
B Vk 1
[0,s] f — dx
( ) 10g2 henJUk+s) 1+x
=—— Y (log(1+3)-log(1+ ;1
log2 keN( og(1+ ) ~log( k+s))
1
=— log(1+£)—1log(1+ =5
og2 keN( og(1+§) ~log(1+ gi7))
1 j-s/k 1
— — dx
10g2 henJsik+1) 1+x
= u([0,s1)
completing the proof. O

Proposition 70. The GauB3 map is ergodic with respect to the Gaul3 measure.

The proof of Proposition 70 is omitted.

The Gaull map and the Gaul measure are tightly connected to the theory of
continued fractions. Recall that any irrational number x € [0,1) has a unique
continued fraction expansion

x = y ai,ag,...€N,

aj+
1

as+,

ag +

which we write as [0;a1,a2,...].

Note that if x =[0;a1,as9,...], then T'(x) =[0;a9,as,...]. Thus T acts as the left
shift on the continued fraction representation of a number.

Next, observe that the first digit a; in the continued fraction expansion of a real
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number x =[0;a1,a2,...1€[0,1) satisfies a; = & if and only if
xe (gl b (4.5.3)

In other words, the continued fraction expansion of all numbers in (1/2,1] starts

with the digit 1, all numbers in (1/3,1/2] starts with the digit 2, all numbers in

(1/4,1/3] starts with the digit 3, and so on. Let
a(x) = Z k1

(x). (4.5.4)
EkeN (k_l’k']

In view of the above observation, a(x) is a function that maps every x € [0, 1) to the
firs digit in its continued fraction expansion. Since the Gaull map acts as the left
shift on the continued fraction representation of a number, it follows that we can
recover the entire continued fraction expansion of x through its orbit x, Tx, Tx,
under the Gau3 map. More precisely, for any irrational x =[0;a1,a2,...] we have

an+1=a(T"x), Vn e Nu{0}. (4.5.5)

This establishes a direct link between the dynamical behaviour of the Gaufl map 7'
and continued fraction representations of irrationals in the [0, 1) interval.
Let us now give a proof of Theorem 68.

Proof of Theorem 68, part (i). The frequency of the digit & in [a¢;a1,a2,...]11s
lim —|{1 <n<N:a,=k}|
N—oo N

Recall that a, = & if and only if the (rn — 1)-th iterate of x under the Gaull map 7'
lands in the interval (1/(& + 1), 1/k] (cf. (4.5.3) above). Therefore

.1 1
I%Er;oﬁngngN:an:kH :1\}'131 —|{O<n<N—1:a(T”x):k}|

n
h_r.%o_ E l(kl % (T"x).
By Birkhoff’s Pointwise Ergodic Theorem, we have
1
J— n = _ =
z%lféoN Z_Ol(—kipi](T ) ”((k+1’k]) 4.5.6)

for p-almost every x € [0, 1). Since a subset of [0,1) is a conull set with respect to the
GauB measure if and only if it is a conull set with respect to the Lebesgue measure,
it follows that (4.5.6) also holds for Lebesgue-almost every x € [0,1). It is now a
straightforward calculation that gives

( ( ) Ve 1 di = 2108(n +1) ~ log(n) ~ log(n +2)
E+1F 10g2 V) L+x log2

’

finishing the proof. O
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Proof of Theorem 68, part (ii). We have

. ai+ag+...+ay .. 1N
lim = lim — E ™
N1—>oo N N1—>ooNn=0a( ®)

where a(x) is as defined in (4.5.4). Note that a(x) is not an integrable function,
which means we need to truncate it at a finite level to be able to apply the Pointwise
Ergodic Theorem. Let

ap(x) = Z k1

—1 (k+1’k

] (%)

and note that ajs(x) converges to a(x) pointwise as M — oo. Since aps(x) is bounded,
we can apply the Pointwise Ergodic Theorem and obtain

M
135’20_ Z am(T"%) = Zk"‘((ku k]) 213g2,;1k11

for py-almost every x € [0, 1), which also gives it for Lebesgue-almost every x € [0, 1).
The claim follows by taking M — oo and noting that 377 | k—il = 00. O

Proof of Theorem 68, part (iii). Define f(x) = log(a(x)), where a(x) is as in (4.5.4).
Then

N 1
dim log((a1az-...-an)N) = Jim Z F(T™x)
—00

The claim follows from the Pointwise Ergodic Theorem and a straightforward
calculation that shows

o logk 1k 1
—— dx =1log(C),
ff 110g2 Vk+1) 1+x &

(ha1)? | 0B RV 102(2)
where C = [ 1(k(k+2)) .

The proof of Theorem 68, part (iv) is omitted.



Chapter 5

Classifying Measure Preserving
Systems

In every area of contemporary mathematics, one of the core objectives is to develop
the right tools and the appropriate language to compare and categorize the main
objects of interest. For example, in group theory, it is important to understand when
two groups are isomorphic, or when one group embeds into another. In addition,
it is useful to sort groups into different categories according to characteristic at-
tributes, such as free groups, nilpotent groups, cyclic groups, torsion-free groups,
etc. Analyzing these special classes offers a more concrete sense of the different
behaviour that exists within the category of groups.

In ergodic theory, the main objects of interest are measure preserving systems.
Naturally, it would be useful to understand when the dynamical behaviour of two
measure preserving systems is independent, or correlated, or identical. At the
same time, it would be useful to develop basic notions that allow us to distinguish
measure preserving systems with different behaviour.

5.1. Factors, Extensions, and Isomorphisms

The morphisms in the category of measure preserving systems are factor maps.

Definition 71 (Factor map). Let (X,«/,u,T) and (Y ,9,v,S) be measure preserving
systems. A measurable map 7: X — Y is a factor map if
¢ the push-forward of y under 7 equals v;
* g intertwines 7' and S, by which we mean that (Sox)(x) = (moT')(x) for u-almost
every x€ X.
The last condition is equivalent to the commutativity of the following diagram
p-almost everywhere:

57
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X T X
Y S Y

Definition 72 (Factors and Extensions). If there exists a factor map 7: X — Y from
a measure preserving system (X,</,u,T) to another (Y,4,v,S), then (Y,%,v,S) is
called a factor of (X,</,u,T). Equivalently, (X, </, u,T) is said to be an extension of
Y,%,v,S).

Since in measure theory sets with 0 measure are considered negligible, the
definition of factor maps and isomorphisms need to be flexible enough so that, in
particular, two systems that differ only on a 0 measure set are isomorphic.

Definition 73 (Isomorphism). A measurable map ¢p: X —Y between two measure
preserving systems (X, «/,u,T) and (Y,4,v,S) is called an isomorphism if it is a
factor map ¢: X — Y and a factor map ¥:Y — X such that ¢poy and yo¢ are
almost everywhere the identity, i.e., ¥(¢(x)) = x for p-a.e. x € X and ¢(y(y)) = y for
v-a.e. y €Y. Two measure preserving systems are isomorphic if there exists an
isomorphism between them.

5.2. Introduction to topological groups

Definition 74. Let G be a group.
* A topology 7 on G is said to be a group topology if the maps x: G x G — G and
1: G — G defined by defined by x(x, y) = xy and i(x) = x~! are continuous when
G x @G carries the product topology.
* A topological group is a pair (G, 1) where G is a group and 7 is a group topology
on G.
If the group topology 7 is Hausdorff (resp., compact, locally compact, connected,
metrizable, etc.), then the topological group (G, ) is called Hausdorff (resp., compact,
locally compact, connected, metrizable, etc.). Likewise, if G is cyclic (resp., abelian,
nilpotent, etc.) then the topological group (G,7) is called cyclic (resp. abelian,
nilpotent, etc.).

Examples

Indiscrete groups. Let G be any group and let 71 = {®,G} denote the trivial
topology on G (sometimes also refereed to as the indiscrete topology). Then (G, 17) is
a topological group since any map into an indiscrete space is continuous. Since the
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trivial topology is finite, (G, 1) is a compact topological group. It is Hausdorff if and
only if G is the trivial group.

Discrete groups. Let G be a group and denote by 7p the discrete topology on
G. Then (G, 1p) is a topological group because any map whose domain is a discrete
space is continuous. Any discrete space is Hausdorff and locally compact, so (G, 7p)
is a locally compact Hausdorff group. It is compact if and only if G is finite; and it is
o-compact if and only if G is countable.

The real line. The additive group (R,+) endowed with its usual topology is a
topological group which we call the real line, and which we also denote R. The
compact sets in the real line R are exactly the closed and bounded sets (this is
the Heine-Borel Theorem for R ). We can use this to see that the real line is a
non-compact o-compact locally compact Hausdorff topological group.

The rationals. The additive group (Q,+) endowed with the subspace topology
inherited from the real line is a topological group. It is Hausdorff, but unlike the
real line, it is not locally compact (and therefore also not compact). However, Q is
o-compact since it is countable.

The circle group. The set Sl:={zeC:|z| =1} under multiplication with the
subspace topology inherited from the usual topology on C is a topological group, and
we shall call it the circle group; it is compact and Hausdorff.

The torus. Let T =R/Z, which is an abelian group under addition modulo 1. It is
a quotient group of the real line, and hence endowed naturally with the quotient
topology inherited from R. Under this topology, T is a compact Hausdorff group.
Note that (T,+) and (S1,:) are isomorphic as topological groups, and the map
x — exp(27ix) is a natural homeomorphic group isomorphism between them.

Infinite circle group. Let SN=S'xS!xS! x... denote the product group con-
sisting of countably many copies of S!. When endowed with the product topology,
SN is a topological group. Since $1 is a compact Hausdorff group, by Tychonoff’s
theorem, SN is a compact Hausdorff group. We recall Tychonoff’s theorem, which
will be used again in the course :

Theorem 75 (Tychonoff). Let (X;);c; be a collection (possibly uncountable) of topo-
logical spaces. If X; is compact Vi € I, then, the product space [];c; X; is also
compact.
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5.2.1. The Haar measure

Let G be a locally compact group, and let %83 denote Borel o-algebra on G. A Borel
measure y on G is called left translation invariant if for every A € g and g € G,
g 1A) = u(A), where g71A = {h € G : gh € A}. Analugously, u is right translation
invariant if W(Ag=1) = p(A) holds for all A € #g and g€ G.

Haar’s Theorem. Let G be a locally compact Hausdorff topological group. There is,
up to a positive multiplicative constant, a unique Borel measure mg on G satisfying
the following properties:
(i) The measure mg is left translation invariant.
(ii)) The measure mg gives finite measure to any compact set.
(iii) The measure mq gives positive measure to any open set.

The measure mqg guaranteed by Haar’s Theorem is called the left Haar measure
on G. In complete analogy, one can prove the existence and uniqueness of a right
Haar measure on G.

The most familiar example of a Haar measure is the Lebesgue measure on the
real line R, which is both left and right translation invariant.

Remark 76. Here are some noteworthy remarks about the Haar measure.

¢ If G is compact then mg(G) is finite and positive, and hence, by normalizing
mg, we can assume that the Haar measure is a probability measure.

¢ If G is o-compact then the Haar measure is a Radon measure (cf. the discussion
in Section 3.3).

e Ifi: G — G denotes the map «(x) = x~! then mg is a left Haar measure on G
if and only if im g, the push-forward of mqg under (, is a right Haar measure
on G. We see that the existence and uniqueness of a left Haar measure and a
right Haar measure are trivially equivalent.

¢ Topological groups for which the left Haar measure and the right Haar mea-
sure coincide are called unimodular groups. Examples of unimodular groups
are abelian groups, compact groups, discrete groups (e.g., finite groups),
semisimple Lie groups, and connected nilpotent Lie groups.

5.2.2. The Pontryagin dual

Definition 77. Let G be a locally compact abelian topological group.

* A continuous group character of G is a continuous homomorphism from (G, +)
to the circle group (S!,-), i.e., a continuous map y: G — S! satisfying y(a+5) =
1(@)x(b) for all a,b € G.

® The Pontryagin dual of G is the set of all continuous group characters of G and
denoted by G. Since pointwise multiplication of continuous group characters is
a continuous group character, Gisa group. Moreover, when endowed with the
topology given by uniform convergence on compact sets (that is, the topology
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induced by the compact-open topology on the space of all continuous functions
from G to S1), G is an abelian locally compact topological group.

Proposition 78. We have 65 G and the canonical map evg: G — /G:\given by
evg(g): (x — x(g)) is a homeomorphic isomorphism between (G, +) and (Gj 2.

The proof of Proposition 78 is omitted.

Proposition 79. Let G be a compact abelian topological group and let mg denote
the (normalized) Haar measure on G.
(i) Finite linear combinations of continuous group characters form a uniformly
dense subalgebra of C(G).
(ii) The set {x : x is a continuous group character on G} forms an orthonormal
basis of L%(G, Bg,m¢).

Proof of part (i). Let of :={}¥} ;a;¥i:a; €C,y; is a character of G,Vi=1,...,n}, ie,
it is the set of finite linear combinations of continuous group characters. Note that
& is clearly a subalgebra of C(G) as it is closed under all the operations of the
algebra C(G). Moreover, &/ contains a non-zero constant function as it contains
the trivial character defined by y(g) = 1,Vg € G. Finally, it is also closed under
complex conjugation. Indeed, the conjugate of a character y is defined by y: G — S,
1(g) = @ One can see that this is well defined as for any z € C such that |z| =1,
we have z = 1/z, hence,

18 =x(g)
=x@"
=™
since y is an homomorphism. Moreover, since by Proposition 78 the map G=G

is injective, &/ separates points. In view of the Stone-Weierstrass Theorem (see
Section 3.2), we conclude that of is dense in C(G). H

5.3. Kronecker Systems

Definition 80. Given a measure preserving system (X, «, u, T'), a non-zero function
f e L%(X, <, p) is an eigenfunction if there exists a constant A, called the eigenvalue,
such that foT = Af (where the equality is understood to hold y-almost everywhere).

Observe that f is an eigenfunciton if and only if it is an eigenvector for the
Koopman operator Ur: L%(X, s/, ) = L%(X, </, 1) and A is the associated eigenvalue.
Since Ur is unitary, all its eigenvalues must have absolute value 1. The set of all
eigenvalues of (X, o/, u,T) is called the point-spectrum of T and denoted by o(T).
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Example 81. Let (T,%yr,mt1,T,) be a circle rotation, that is, Ty (x) =x+a mod 1
for some fixed @ € R. Then the function f(x) = e(x) = e?"* is an example of an
eigenfunction for this system, and its eigenvalue is e(a). As a matter of fact, all
eigenfunctions for the transformation T'x = x + @ mod 1 are of the form x — ce(nx)
with n € Z and ¢ € C, and the corresponding eigenvalues are the numbers e(na),
n € Z. Hence, the point spectrum of 7 is given by

o(T)={e(na):nez}.
Note that o(T) is a subgroup of the circle group (S!,-), which is not a coincidence.

Lemma 82. Let (X,«,u,T) be a measure preserving system.
(i) The point-spectrum o(T) of T is a subgroup of (S},-), where S' denotes the

unit circle in the complex plane.

(ii) Iff and g are eigenfunctions with eigenvalues As and A4, respectively, and
Ar # Ag, then f and g are orthogonal.

(iii) If (X, ,u,T) is ergodic then every eigenfunction f has constant modulus
(i.e. If| is constant p-almost everywhere) and every eigenvalue is simple
(i.e. the eigenspace of every eigenvalue is 1-dimesnsional).

Proof. If f and g are eigenfunctions with eigenvalues Ay and Ag, respectively,
then fg is an eigenfunction with eigenvalue A¢1; and f is an eigenfunction with
eigenvalue Af = /1}71. This shows that o(T') is closed under products and taking

inverses, proving that it is a subgroup of (S!,-). This proves part (i).

For part (ii), note that (f,g) =(T'f,Tg) = Af/l_g(f,g), and hence (f,g) =0.

For part (iii) observe |f|oT =|A¢||f| = |f|. Since invariant functions in ergodic
systems are almost everywhere constant, it follows that |f| is almost everywhere
constant. Finally, if f1 and f2 are two eigenfunctions with the same eigenvalue
A then f1/fs is an invariant function and hence constant almost-everywhere by
ergodicity. This shows that f; is a scalar-multiple of fg, finishing the proof. O

Definition 83 (cf. page 19). A (compact) group rotation is a measure-preserving
dynamical system (G, %qg,mqg,R) where (G, +) is a compact abelian group, R: G — G
is rotation by a fixed element a € G, that is, R(x) = x + a for all x € G, 9B denotes
the Borel o-algebra on G, and mg is the normalized Haar measure on G.

Proposition 84. Let (G,%g,mq,R) be a group rotation. Then there exists an
orthonormal basis for L%(G,%Bq,m¢) consisting of eigenfunctions.

Proof. Recall that a continuous group character of a compact abelian group (G, +) is
a continuous homomorphism y from G into the multiplicative group S! < C. The
collection of all continuous group characters of G, known as the Pontryagin dual of
G, forms an orthonormal basis for L2(G, g, m¢g) (see Proposition 79). Moreover, if
1 is a continuous group character then y(x + @) = y(a)x(x), so y is an eigenfunction
with eigenvalue y(a). O
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The property described in Proposition 84 distinguishes an important class of
measure-preserving systems.

Definition 85. A measure preserving system (X, </, u,T') has discrete spectrum if
there exists an orthonormal basis of L2(X, </, i) consisting of eigenfunctions. If
(X,o,u,T) is ergodic and has discrete spectrum then it is called a Kronecker system.

Theorem 86. Let (X,«,u,T) be a measure preserving system, where (X, </, 1) is a
standard probability space'. Then (X,«/,u, T) is a Kronecker system if and only if
it is isomorphic to an ergodic group rotation.

For the proof of Theorem 86 we need the following lemma.

Lemma 87. Let (G,+) be a compact abelian group and let R : G — G be rotation
by a fixed element a € G. For any Borel probability measure p on G for which
R is measure preserving and ergodic the resulting measure preserving system
(G,%a, p,R) is isomorphic to a group rotation.

Proof. Let H={na:n € 7}, which is a closed subgroup of G, and consider the quo-
tient group G/H. Let n: G — G/H denote the natural quotient map and let p* be the
push-forward of p under 7. If p* is not a point-mass then there exists a set C < G/H
with 0 < p*(C) < 1. The set A = 771(C) is then a subset of G invariant under R and
satisfying 0 < p(A) < 1, which is impossible because (G, %g, p,R) is ergodic. Thus p*
must be a point-mass, and let H + u denote its support. It is now straightforward
to show that the map y: H — G given by ¥(x) = x + u is an isomorphism from
(H,#Bz,mmg,R) to (G,%g,p,R), and we leave the details to the interested reader.
Since (H,%r,mm,R) is a group rotation, the proof is complete. O

Proof of Theorem 86. That every group rotation has discrete spectrum is the content
of Proposition 84. So it only remains to prove the converse under the additional
assumption that we are dealing with a standard probability space and that T is
ergodic.

Since (X, </, p) is a standard probability space, we can assume without loss of
generality that X is a compact metric space, o is the g-algebra of Borel sets, and p is
a Borel probability measure. Our goal is to find a group rotation (G, %g,mg,R) such
that (X, </, u,T) and (G,%Ba,mq,R) are isomorphic. Let y1, x2,... be an orthonormal
basis of L%(X,<, 1) consisting of eigenfunctions and let A1,19,1s,... denote the
corresponding eigenvalues; note that this basis is countable because the Borel o-
algebra of a compact metric space is countably generated. In view of Lemma 82,
part (iii), we can assume that y, takes values in S'. Let

sN=slxslxslx...

1A standard probability space is any probability space that is measurably isomorphic to a proba-
bility space (X, </, ) where X is a compact metric space, o is the o-algebra of Borel sets, and p is a
Borel probability measure on X.
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and consider the map ¢: X — SN given by

P(x) = (x1(x), xo(x), x3(x),...).

Also, let @ =(11,19,3,...) € SN and consider the map R: SN — SN given by R(y) =
a -y for all y € SN. Note that

¢oT(x)=Rop(x) for p-a.e. x€ X. (5.3.1)

Let p = ¢u denote the push-forward of y under ¢. We claim that (X, </, u,T) and
(SN,%§N, p,R) are isomorphic and that ¢ is an isomorphism between them.

To prove that ¢ is an isomorphism, it suffices to show that it is a factor map
and that it is almost everywhere invertible. That ¢ is a factor map from (X, <, u,T)
to (§N,QB§N, p,R) follows immediately from the definition of p and from (5.3.1). It
remains to show that ¢ is almost everywhere invertible. Let d: X x X — [0,00) be a
metric on X. We claim for every ¢ > 0 there exists a set Q. € X with p(X\Q;)<¢
and the property that for any x,y € Q, we have

Px)=dp(y) = dx,y)<e.

In order to find Q., let By,...,B, be a finite collection of balls with diameter
at most € that cover the entire space X; such a cover exists because X is com-
pact. Since 1, ¥2,... form a basis of L%(X, <, u), there exists NeN and fi,...,f €
span{yi,...,xn} with |f; — 1, 2 < €/2r. Thus, by Chebyshev’s inequality, the set

{x e X :max;-1,__,Ifi(x)—1p,(x)| > 1/2}

has measure at most ¢. Let Q, be the complement of the above set. Suppose x,y € Q.
and ¢(x) = ¢(y). Since ¢(x) = ¢(y), we have y,(x) = yn(y) for all n =1,...,N and
therefore f;(x) = f;(y) foralli =1,...,r. From x, y € Q, it follows that |f;(x)—1p,(x)| <
1/2 and |f;(y) - 1B,(y)I<1/2 for all i =1,...,r, and hence

1p,(x)=1p,(y) foralli=1,...,r.

This can only happen when d(x,y) < ¢, as claimed.

Next, let QO denote the set of all x € X that belong to infinitely many Q;/; for
k €N. By the Monotone Convergence Theorem, Q has full measure. Moreover, for
any x,y € Q) we have

Pdx)=¢p(y) = x=y.

This completes the proof that ¢ is almost everywhere invertible.

Since we have proved that ¢ is an isomorphism, the systems (X,</,u,T) and
(SN, Bgn, p,R) are isomorphic. But in view of Lemma 87, the system (SN, Bgn, p, R)
is isomorphic to a group rotation (G,%g,mqg,R), which shows that (X,«/,u,T) is
isomorphic to a group rotation (G,%g,mqg,R). H
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5.4. Weakly Mixing Systems

As we saw in Corollary 48, a measure preserving system is ergodic if and only if
any two sets became asymptotically independent on average. For certain systems,
this asymptotic independence occurs even in a significantly stronger way.

Definition 88. A measure preserving system (X, </, u,T) is weak mixing if the
corresponding product system (X x X, of ® o ,u® u,T x T') is ergodic.

The following theorem states several equivalent properties to weak-mixing which
explain the name.

Theorem 89. Let (X,«,u,T) be a measure preserving system. Then the following
are equivalent
(1) (X,o,u,T) is weak mixing.
(ii) For every ergodic measure preserving system (Y ,28,v,S), the product (X x
Y, A ®B,u®v,T xS) is ergodic.
(iii) For any two sets A,B € of we have

1 X . B
1\}152017’; |ANT™B)- w(A)u(B)| =0.

(iv) For any f,g € L2(X,.sz¢,/.t) we have

1N
jm 25| [ g [ o[ e o
N—>00N,lz=:1X fregdu—| fduj gdp

(v) For any A,B € o there exists a subset E =N with upper density d(E) = 0 such
that

lim (AN T7"B) = wA)(B).
n¢E

Condition (iii) makes it clear that every weak mixing system is ergodic. However,
not every ergodic system is weak mixing. For example, any non-trivial system with
discrete spectrum (such as a circle rotation) is not weakly mixing.

Condition (ii) implies that if a system is weak mixing, then its product is also
weak mixing. Therefore any number of self products yields a weak mixing system.

Proof of Theorem 89.
())=(@iv) Replacing f with f — [x f du we can assume that [y f du=0. Using the
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Cauchy-Schwartz inequality we have

1 N
lim sup N >

N—-oo n=1

Using the hypothesis that the product system (X x X, o @ o/, u@u, T xT)
is ergodic and applying von Neumann’s Mean Ergodic Theorem to the
functions f ® f € L3(X x X) and g ® g € L?(X x X) we obtain

2

2

]_N

T f-gd <limsup — an-d.
fX fgu) i upNZX f-gdu

N—-oo n=1

lim — Z [(FeoTxT) gogduew

=f f®7d(u®u)f gog dusp).
XxX XxX

Observe that [y, xf®f duey =|[xf d/.t|2 =0, so the previous equation
can be rewritten as

N 2
i - n —
z&gﬂoN,;lengd” 0,

finishing the proof.

(iv)=(iii) This is immediate by letting f =14 and g =15.

(iii)=>(iv) Condition (iii) is the special case of (iv) when f and g are indicator functions.
Since every L? function can be approximated by finite linear combinations
of indicator functions, we deduce that (iv) holds for any f,g € L2.

(iii))=>(v) FixmeNand set A,, :={neN: |W(ANnT"B)—- w(A)u(B)| > 1/m}. Observe
that

1
N;
Taking the limit as N — oo we conclude that d(A,,) = 0 for all m € N. For

each m € N let N,,, € N be such that for all N > N,, we have |A,, Nn[1,N]| <
N/m and define

|Am N[1,NII

IM(A NT™"B) - wA)wB)| >
mN

||[\’]2

E={ Ann[Np+1,Npi1l).

ﬁcz

1

Now observe that A,, € A,,1 for all m €N, hence for each N €N, choosing
m such that N €[N, +1,N,,+1] we have En[1,N]< A,, n[1,N] and hence
|E N[1,N]| < N/m. Taking N — co we conclude that d(E) = 0.
Finally, for each m €N, let N > N,,, then if N ¢ E we also have N ¢ A,, and
so |[WANT"B)— w(A)u(B)| < 1/m concluding the proof.

(v)=(iii) Assuming (v), for every ¢ the set {n e N: |u(A N T "B) - w(A)u(B)| > €} has
density 0. On the other hand |[y(ANT™"B) - w(A)u(B)| < 1 for every n e N,
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and hence

11msup - Z |MANTB) - w(A)u(B)| < 2.
N—-oo
Since ¢ is arbitrary we conclude that (iii) holds.
Let (Y,4,v,S) be ergodic. In order to show that (X xY , o/ ® B,u®v,T x S)
is ergodic, we will show that for any F,G e L2(X xY),

lim — TxS)'F- - f F f .
Nl—IgoN Z XXY( xS)'F-G d(u®v) . duev) XxYG duev)
(5.4.1)

Since finite linear combinations of tensor functions of the form (f1®f2)(x,y) =
f1(x)fa(y) form a dense subset of L2(X x Y), it suffices to establish (5.4.1)
when both f and g are tensor functions. Let f(x,y) = fi(x)f2(y) e LA X x Y)
and g(x,y) = g1(x)g2(y) € L3 X x Y) be arbitrary tensor functions. Then
(5.4.1) can be written as

1 — n . n .
lerlm > XT fi gldﬂfYS fa-g2dv

=ff1duffdefg1dufgzdv.
X Y X Y

Since (5.4.2) is linear in f; and we can write f1 = [x f1 dp+ (f1— [x f1 dy),
we can separate the proof of (5.4.2) into two cases: when f; is a constant
and when [y f1 du=0. For the first case, the left hand side of (5.4.2) is

(5.4.2)

ffldﬂf g1dp lim fSnfz g2 dv.

But now, using the Mean Ergodic Theorem for the ergodic system (Y, %, v,S),
it is clear that (5.4.2) holds in this case.

Next we establish (5.4.2) in the case that [y f1 du= 0. Applying the triangle
inequality and using Cauchy-Schwarz with f2,g2, we get

1 N
Nzl XTnf1°g1 dﬂfYSnfz'gz dV|
n=

1 N
<y anfl'g1 dﬂf S"f2-g2 dv
n=11/X Y

1 N
<Ifallzz-lgzlze- (N 2

n=1

f T"f1-g1dp
b

)

It follows from (iv) that this quantity converges to 0 as N — oo, establishing
(5.4.2).

It suffices to show that if (ii) holds then (X, <, u,T) is ergodic. To see this
assume that (X, </, u,T) is not ergodic and let A € o be an invariant set
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such that 0 < u(A) < 1. Let (Y,%,v,S) be the (ergodic) one point system.
Then A xY is invariant for ' xS and so (X xY , o/ @ B,u®v,T x S) would
not be ergodic either.

L]

Conditions (iii) and (iv) in Theorem 89 equally hold when the regular Cesaro
averages are replaced by uniform Cesaro averages (which were introduced at the
beginning of Section 2.5), and the proofs presented work in that case as well. This
yields two more equivalent characterizations of weak mixing.

Despite all the equivalent characterizations of weak mixing listed in Theorem 89,
the most important one is still missing; it is given by the following theorem.

Theorem 90. A measure preserving system (X, </, 1, T') is weak mixing if and only
if it has no non-constant eigenfunctions.

The proof Theorem 90 can be found on page 78 below. It relies an the Jacobs-de
Leeuw-Glicksberg decomposition, which we state and prove in the next chapter.

5.5. Mixing Systems

Definition 91. A measure preserving system (X, </, u,T') is mixing (or sometimes
also referred to as strong-mixing) if for every A,B € o,

lim (T "ANB) = WAB).

Proposition 92. Let (X, </, u,T) be a measure preserving system. Then the follow-
ing are equivalent.
* The system is mixing.
e Forevery f,g € L2(X), limy—co [x T"f -g du= [x f du [x g dp.
e For every f € LX) with Jx f du=0, the orbit T" f converges to 0 in the weak
topology.

Proof. The equivalence between the first two follows from the fact that the set of
finite linear combinations of indicator functions is dense in L2. The equivalence
between the last two is immediate, after replacing f with f := f — Jxf du and
noticing that [ f du=0. O

Every mixing system is weak mixing, and every weak mixing system if ergodic.
The following corollary, a culmination of results proved up to this point, offers an
illustrative juxtaposition of these central notions in ergodic theory.

Corollary 93. Let (X,«/,u,T) be a measure preserving system.
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e T is ergodic if and only if for all A,B € </,

) 1 N-1 n
Jim n; T "ANnB)=uA)(B).

¢ T is weak mixing if and only if for all A,B € &,
1 N-1

]\}g%oﬁrg)lu(T‘ ANB)-pA)uB)|=0.

e T is mixing if and only if for all A,B € «,
lim w(T™™"AnB) = uwA)ubB).
N—oo

Proof. The first bullet point follows from Corollary 48. The second one follows from
Theorem 89. The third is just the definition of (strong) mixing. O

There is also a notion of higher order mixing.

Definition 94. A measure preserving system (X, </, u,T') is mixing of order k if for
every Aj,..., A, € & and every ay,...,ar: N— N with lim, .o a;(n) —aj(rn) = co for
every 1<i<j<konehas

lim p(T"‘”(")A 1NT2™A,n...0 T‘“k(")Ak) = WA D(Ag) - (Ap).

n—00
Notice that mixing of order 2 is the same a strong-mixing. It is clear that k-
mixing implies £ — 1-mixing. It is a major open problem in ergodic theory whether
the converse holds, even for 2 = 3.

5.6. Bernoulli Systems

Given a finite set Z, called the alphabet, consider the set =N of all infinite words
in the alphabet =. The map 7': =N — =N given by T((xn)52;) = (xn+1)52, is called the
left-shift.

Definition 95. A measure preserving system (X,«/,u,T) is called a Bernoulli
scheme (or sometimes also Bernoulli shift) if X = N, of is the o-algebra of Borel
sets on IV, T is the left shift and p= uﬁ' is the product measure of some probability
measure (i) on 2. A measure-preserving system is called a Bernoulli system if it is
isomorphic to a Bernoulli scheme.






Chapter 6

Spectral Theory of Measure
Preserving Systems

We are now ready to describe one of the most profound phenomenon in ergodic theory,
a dichotomy between eigenfunctions and weak mixing. Recall that a Kronecker
system is spanned entirely by its eigenfunctions, whereas a weak mixing system has
no non-trivial eigenfunctions at all. In general, a system exhibits a mixture of these
two extremes. Nonetheless, it is still possible to separate these phenomena from one
another. The result making this possible is called the Jacobs-de Leeuw-Glicksberg
decomposition. Its proof relies on the spectral theorem.

6.1. Herglotz’s Theorem

Definition 96. A function f: Z — C is called non-negative definite if for all M e N
and A4,...,Ay €C one has

M —_—
Y AidifG-j)>0.
i,j=1
Equivalently, f is non-negative definite if for any M € N the matrix A € CM¥*M
defined by A;; = f(i —j) for all 1 <i,j < M is a non-negative definite matrix
(sometimes also called positive semi-definite matrix).

Example 97. The indicator function of the even integers 127(n) is non-negative
definite, whereas the indicator function of the odd integers 127,1(n) is not. Other
examples of non-negative definite functions include f(n) = 1jp; and f(n) = e(nx) for
any x € R.

As we have already done in pervious chapters, we identify the torus T = R/Z with
the half-open unit interval [0, 1), and we identify continuous functions g on T with

71
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continuous functions g on [0,1) satisfying lim,_.1- g(x) = g(0). For x € R, write e(x)
to abbreviate e2%%,

Herglotz’s Theorem. A function f: Z — C is non-negative definite if and only if
there exists a finite Borel measure p on T such that

f(n)= f e(nx) du(x), VneZ.
T

The measure u provided by Herglotz’s Theorem is called the spectral measure
associated to f.

Example 98. To help develop a better grasp on the notion of a spectral measure,
we include here a short list of examples of non-negative functions and their corre-
sponding spectral measures. Given a set A € Z let 14 denote the indicator function
of A, and given x € T let §, denote the Dirac point measure at x.

| non-neg. def. fuen. | spectral meas. |
1 o)
197(n) 380 +81)
e(nx) Oy
1i03(n) Lebesgue measure

For the proof of Herglotz’s Theorem we need to recall some standard notions
from measure theory. A sequence of Borel measures (u,),en on T is said to converge
vaguely to some measure p on T if for any continuous g: T — C one has

,}ggofvguﬁngN-

Also, recall that the total variation of a measure p on T is defined as ||y = u(T).

Proof of Herglotz’s Theorem. First, let us show that if u is a finite Borel measure on
T then the function f(n) = [;e(nx) du(x) is non-negative definite. Observe that for
any M €N and A4,...,A) € C we have

M . M .
Y AiifG-= ) Aidj | el - j)x) dulx)
i,j=1 i,j=1 T

M __
:fT( > Aie(ix)kje(jx)) du(x)

i,j=1
.[T

Therefore Z%zl /L-A_jf (i—Jj) >0, proving that f is non-negative definite.
It remains to show that if f is non-negative definite then there exists a Borel
measure p such that f(n) = [;e(nx) du(x) holds for all n € Z. Let ¢n: T — C be

2
dp(x).

M
Z Ae(ix)
i=1
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defined as
1

N
Y FG— e — ).
N

i,j=1

Pn(x) =

Since ¢n(x) can be written as Z%Za’j:l e(—ix)e(—jx)f (i — j), the fact that f is non-
negative definite implies ¢pn(x) > 0 for all x € T. Let ux denote the measure on T
whose density function with respect to Lebesgue measure is ¢y. In other words, let
1 be the measure on T uniquely determined by the property that

1
f 2(x) dn(x) = f g@)Pn () dx
T 0

for all continuous functions g: T — C. Note that for any n € Z,
1 N 1
| etns) duna = 3. £ [ G- i+ ni) do
T N i,j=1 0
_[@-"f@), ifinI<N,
B 0, otherwise.

In particular, this means that

lim | e(nx) dun(x) = f(n). (6.1.1)
T

N—oo

Since finite linear combinations of linear characters x — e(nx), n € Z, are uniformly
dense in C(T) (due to the Stone-Weierstrass Theorem), we conclude that for all
continuous g: T — C the limit

lim | gun exists.
N—-ooJT

By the Riesz—Markov—Kakutani representation theorem, there exists a finite Borel
measure g on T such that for all continuous g: T —C,

z\}-lféoﬁrg’”":ﬁrg”'

In other words, puy converges vaguely to y as N — co. In view of (6.1.1), we have

fT e(n)(x) = f(n),

finishing the proof. O

Corollary 99 (Existence of spectral measures for unitary operators). Let U: 5 —
¥ be a unitary operator on a Hilbert space 5. For each f € ¢ there is a unique
finite Borel measure uy on T = R/Z such that

U"f, )= f e(nx) dus(x), VneZ. (6.1.2)
T



74 CHAPTER 6. SPECTRAL THEORY OF MEASURE PRESERVING SYSTEMS

Proof. Since U is unitary, it is straightforward to check that f(n) = (U"f,f) is a
non-negative definite function, and hence the conclusion follows right away from

Herglotz’s Theorem.

O

Definition 100. The measure yy defined through (6.1.2) is called the spectral

measure of the function f with respect to a unitary operator U.

6.2. Wiener’s Lemma

Wiener’s Lemma. Let u be a finite Borel measure on T. Then

11m— | f e(nx)du(x)| Y |2,

N—oo N xeT

(6.2.1)

Proof. Let y' be the push-forward of y under the map x — —x on T, that is, y'(B) =

(—B) for all Borel sets B. Let v = u * u’ be the convolution of u with y’,

v(B):p*y’(B):fle(x+y) du(x) dy'(y).

Note that
1 N1 1, ifx=0
lim — ) e(nx) =<’ ’
N—-oo N 7;) {0, otherwise.

It thus follows from the Dominated Convergence Theorem that
1 N-1

lim — Z e(nx) dv(x) = f 11m —

N-oN N =

Using v = g * ¢/ and the definition of convolution we see that
v({0}) = f f Ligp(x + y) dp(x) dp'(y)
= f p(-yb) du'(y)

= f p({y}) dudy)
=Y Iy

yeT
On the other hand, we have

f e(nx) dvix) = f f e(n(x +)) du(x) de'()
T TJT
= f f e(nx)e(ny) du(x) dy/(y)
TJT

Z e(nx)) dv(x) = v({0)).

(6.2.2)
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- f f e(nx)e(-ny) dp(x) du(y)
TJT

2
= | f e(nx) d/.t(x)| .
T
Now (6.2.1) follows from (6.2.2). O

6.3. Weak Mixing Functions

Even if a system is not weakly mixing as a whole, certain subspaces or com-
ponents of the system may still exhibit weak mixing behavior. This leads to the
following definition.

Definition 101. Let (X,</,u,T) be a measure preserving system and let f €
L%(X,f,p). We say that f is a weak mixing function if for all g € L%(X, </, )
one has

) 1 N-1 "
Jim nZ=0 |KULf,8)| =0. (6.3.1)

Notice that a weak-mixing function f always satisfies [ f du=0. Moreover, in
view of Theorem 89, a system is weak mixing if and only if every function f with
Jf du=01is a weak-mixing function.

Theorem 102. Let (X, </, u, T) be a measure preserving system and let f € L2(X, <, ).
The following are equivalent
(i) The function f is weak mixing.
(ii)) We have

. 1 N-1 n
Jm & % |@wpr.p]=o.

(iii) The spectral measure psof f is continuous®.

Proof of Theorem 102.

(i) (i) The forward implication is immediate, so it only remains to prove the back-
wards direction. Fix g € L%(X, </, ). Our goal is to show (6.3.1). Consider
the product system (X x X,/ ® o/,u® u,T x T) and define F = f ® f and
G = g®g. Let Fy,y denote the orthogonal projection of F onto the space of

1Recall that a Borel measure p is called continuous if it is non-atomic, i.e., all singletons have
zero measure.
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T x T invariant functions in L2(X x X,/ ® o, u® ). We have

1 N-1 N
Jim (5 X |<UTf,g>|) < Jlim ~ Z vzt
7=0
o Nt
Jensen’s/Cauchy-Schwarz Inequality = 11m ZV Z (UTxTF G)
/4 —)w
o =(FunG)

von Neumann’s
Mean Ergodic Theorem

<Gl | Finv || 2
= |G| 2 (Finy, Finy )"

= 161:s ()
4

Using F = Finy + Ferg =[Gl (]\}'I_I,n nZ (UpurF, F))

and Finy | Ferg . . 5
= |6z2 (Jim ZO wir.pf)
n=

1Nl n 1/2
<[6za I lps (Yim 2 |(Wzf.1))
n=

Since 3 ZN 1 KUZf,f)| converges to 0, the proof is complete.
(il)e(iii) An elementary argument shows that
N-1

1 N
J&Exgoﬁ Z [Uzf,F)|=0 < lim = Z [zt H*=0.

By the definition of the spectral measure, we have (Urf,f) = Jre(nx) dps(x).
Hence, f is weak mixing if and only if

lim — Z |f e(nx) dpf(x)| =0.

N-ooo N

The claim now follows from Wiener’s Lemma because py is continuous if

and only if it is non-atomic, which is equivalent to ¥ et |7({x}h)] = 0.
]

6.4. The Splitting S © 54,

Given a measure preserving system (X, </, u, T') define

., =span{f e L2(X,s/,p): f is an eigenfunction}
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and
Hem ={f e L%(X, o, i) : f is a weak mixing function}.

The Jacobs-de Leeuw-Glicksberg decomposition. We have %, | J, and
%Qﬁnm =L2(X:‘Q¢3IJ')-

Proof. If f is a weak mixing function and g is an eigenfunction then
1 N-1 1 N-1 Neooo
N n=0 N n=0

This already shows that %, | J%m.

It remains to show that %, = /1, because then % & o = L2(X, o, ).
Since we have already established that %, < J£°, it suffices to prove that if
f &€ Hym then f ¢ FEL.

Suppose f ¢ Hym. Let pir be the spectral measure of f and observe that puy is
not continuous due to Theorem 102. In particular, this means there exists some
a € T such that prs({a}) > 0. We claim that f correlates with an eigenfunction whose
eigenvalue equals a. This will imply f ¢ /4 and finish the proof.

Write Y for T, 28 for the Borel o-algebra on T, v for the Haar measure on T, and
S for the map x =x+ a. Then (Y,%,v,S) is a measure preserving system that we
have already encountered numerous times and which we usually refer to as rotation
by a. Let g € L2(Y, 9, v) denote the function g(y) = e(y), y €Y, and observe that g is
an eigenfunction of (Y,48,v,S) with eigenvalue a. Now consider the product system
XxY, o ®B,u®v,T xS) and the function F = f ® g on this product. By the Mean
Ergodic Theorem we have

) 1 N-1 .
where Fy,, is the orthogonal projection of F' onto the subspace of (T' x S)-invariant
functions. Observe that
) 1 N-1 n
Uiaxs-1Finy = Z&.l_IgoUide‘l (ﬁ 7;) UszF)
) 1 N-1 .
= &T;ON ng.() Urys (Uiaxs-1F)
) 1 N-1 "
= 1&_1m e(a)(ﬁ 7;) UszF)

—00
= e(@) Finy.
This gives that Ur.igFinv = Ujgxg-1UTxSFinv = Ujgxg-1Finv, Which proves
UrxiaFinv = e(@) Finy. (6.4.1)
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Our next goal is to show (Fi,y,F) # 0. We have

) 1 N-1
(Finy,F) = lim — nZ=O<U£ﬁxsF,F>
N-1
= lim —
N—oo N =0
N-1

1
= lim N Y e(—na)UZf,f)

N—oo IV pn2p

N-1

- lim — > e(—na)fe(nx) dps(x)

N—*OON n=0

:f( lim Zlsz_"le(n(x—a))) dps(x)

N—oo IV ;20
= pr({a}) > 0.
Define h,(x) = Finy(x,y). By Fubini’s Theorem, we have

Fians ) = [ 20 [ Fiant, 977 @) duia)) dv) = [ 85Xy 1 dviy

Since (Fi,y,F) # 0, we conclude that there exists a positive measure set of y €Y for
which (&, f) # 0. By Fubini’s Theorem, it follows from (6.4.1) that for v-almost every
y the function 4, is a eigenfunction for T with eigenvalue a. It follows that there
exists some y such that both (A,,f) # 0 and 2, is an eigenfunction with eigenvalue
a . Therefore f ¢ S£. as was to be shown. O

Proof of Theorem 90. The Jacobs-de Leeuw-Glicksberg decomposition implies that
a system (X, o/, u, T') is weak mixing if and only if 5%, = 1. This is exactly the content
of Theorem 90. O



Chapter 7

Entropy

Let (X,</,u,T) be a measure preserving system. Suppose we are given information
about the approximate position of a point x € X. What can we infer about the position
of Tx? More generally, if I know the approximate position of x, T'x, T2x,...,T" 1x
then how accurately can we predict the location of 7"x? The answers to these
questions depend crucially on the properties of the transformation T'. If the trans-
formation T is deterministic in nature then the past trajectory of a point determines
the imminent future trajectory and so information about x, T'x, T?x, ..., T" x leads
to a probable projection about the whereabouts of T"x. Conversely, if the transfor-
mation is chaotic then the past orbit has little to no influence on the future course
of the orbit, and knowing the approximate position of x, T*,...,T" 1x may not allow
us to prognosticate the position of 7"x. The purpose of this chapter is to make these
ideas mathematically precise using the notion of entropy.

7.1. Shannon Entropy

The concept of information entropy was introduced by Claude Shannon in 1948
and is also referred to as Shannon entropy. It has various interpretations. Some-
times it is interpreted as a measure of randomness, other times as a measure of
information, and sometimes also as a measure of surprise. The ideas and concepts
behind Shannon Entropy form the basis for the notion of entropy in ergodic theory.

Shannon entropy as the measure of information

When viewed in terms of information theory, entropy equals the average amount of
information gained from an observation. But how can information be quantified? If
grams is the measure of mass, seconds the measure of time, and meters the measure
of distance, then what can be used to measure the amount of information? To answer

79
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these questions, we need to conceptualize the idea of information content. Roughly
speaking, information content is a function that associates a (non-negative real)
number to the amount of information gained when apprehending new content, such
as reading a letter, receiving a message, or observing the outcome of an experiment.

We can measure the quantity of information contained in a message based on
the number of questions that must be asked in order to fully discover the content
of the message. So, for example, the amount of information conveyed by a letter
is the quantity of questions that we need to get answered in order to fully know
the content of the letter. But for this to make sense, we first need to standardise
the questions and the possible answers to ensure that asking for the number of
questions is meaningful.

Here is how the questions are standardised so that their quantity is stable. First
we agree upon the search space, the set of objects of our query. Only questions that
concern (properties of) elements in the search space are allowed. Call a question
binary if it only has two answers: “true” or “false”. A binary question is called
perfect if it splits the search space evenly into 2 equal sub-spaces. Then we define
the information content of a message to be the number of perfect binary questions
that this message answers.

To make this approach more mathematical, we need to start thinking in terms
of “bits”. Bits are either 0 or 1, which represent answers to binary questions. Then
the number of questions that a message answers is the amount of bits that this
message contains. So we have the answer the question of what is used to measure
the amount of information: it is bits!

For example, suppose our search space is given by the following collection of
symbols:

B 0O A A
B O A A

This collection can be fully described using 3 perfect binary questions:

(a) Is the object red?
(b) Does the object have an even number of corners?
(c) Is the object filled in?

Now suppose we label the elements in {l,[1} as good, the elements in {A, A, A, A} as
acceptable, and the elements in {ll,[]} as bad. Then if your message reads “You have
a bad symbol” then you have received 2 bits of information, because you will be able
to answer two questions, namely questions (a) and (). On the other hand, if your
message reads “You have an acceptable symbol” then you have received only one
bit of information, because the message only allows for question (b) to be answered.
The number of bits obtained from a message is its information content.

The entropy is the expected amount of information obtained from a question,
or in other words, the expectation of the information content. Continuing with
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the above example, if every symbol has an equal probability to be chosen, then
the probability of picking a good symbol is p; = 0.25, the probability of picking
an acceptable symbol is pg = 0.5, and the probability of picking a bad symbol is
ps = 0.25. So the entropy, or expected information content, of picking a symbol
uniformly at random and being told whether it is good, acceptable, or bad equals

entropy = —pilog(p1) — p2log(p2) — p3log(ps)
=0.25%2+0.5%x1+0.25%2
=15.

Definition 103. Let (X, </, u) be a probability measure space and ¢: X —{1,...,r} a
discrete random variable. Let p; denote the probability of the event {x € X : f(x) =i}.
The Shannon entropy of ¢ is

H©® =~ pilogy(p:).
i=1

Shannon entropy as the measure of surprise

How surprising is an event? Is it possible to measure surprise with a real number
just as we measure other more graspable concepts in nature? The answers to
these questions follow from Shannon’s solution of the fundamental properties of
information.

Let us try to find a function that describes the surprise of an event happening.
Informally, if two events have the same probability then the occurrence of one event
is just as surprising as the occurrence of the other. So the surprise should be a
function of probability only. Let us write I(p) to denote the surprise associated to
an event with probability p.

If an event occurs with probability 1 then there is no uncertainty and hence the
surprise should be zero. This yields the first condition for I(p).

I1(1)=0. (U1)

Next, note that if an event A is more likely to happen than another event B, then it
is less surprising when A occurs compared to when B occurs. So the more likely an
event the less it should contribute to surprise. We conclude:

I(p) is a decreasing function in p. Uyz)

If two events have roughly the same probability of happening, then one should be
approximately as surprising as the other, yielding yet another natural condition on
I(p).

I(p) is a continuous function in p. Us)

Finally, if event A has a certain amount of surprise, and event B has a certain
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amount of surprise, and you observe them together, and they are independent, it is
reasonable that the amount of surprise adds,

I(pg) = I(p)+ I(g). Us)

Up to a scalar multiple, there is only one function that satisfies conditions
(U1)«(Uy), and that is

I(p) = —logy(p).

Now that we have found a mathematical description of surprise, we can calculate
the expected surprise of a discrete random variable, which we call entropy. Indeed,
the expected surprise should just be the expectation of I(p).

Definition 104. Let (X, </, u) be a probability measure space and ¢: X —{1,...,r} a
discrete random variable. Let p; denote the probability of the event {x € X : f(x) =i}.
The Shannon entropy of ¢ is

r r

H©® =) pil(pi)=-) pilogy(p;).
i=1 i=1

7.2. Entropy of a Partition

Recall that a partition of a probability space (X, </, ) is a finite or countably
infinite collection of pairwise disjoint elements of </ whose union equals X. We
will use { ={A1,...,A;} and { ={A1,A»,...} to denote finite and countably infinite
partitions, respectively. From a probabilistic point of view, a finite partition can
be viewed as a discrete random variable ¢: X — {1,...,r}, and a countably infinite
partition as a random variable £: X — N.

For any partition ¢ we define g(£) to be the smallest o-algebra containing the
elements of £&. We will call the elements of ¢ the atoms of é. For every x € X we
denote by [x]s the atom of ¢ containing x. If ¢ and 77 are partitions, then 7) is called a
refinement of ¢, written ¢ < 1, if each atom of ¢ is a union of atoms of 7. The common
refinement of ¢ and 7, denoted ¢ v 7, is the partition {AnB:A €¢, B € n}. Notice
that o(é vn)=0(&) vo(n).

A partition £ = {A1,A9,...} of a probability space may be thought of as giving
the possible outcomes 1,2,... of an experiment, with the probability of outcome
i being p(A;). Inspired by Shannon entropy, we can associate a number H(¢) to
¢ that describes the amount of uncertainty about the outcome of the experiment,
or equivalently the amount of information gained by learning the outcome of the
experiment.

Definition 105. Let (X, </, 1) be a probability measure space and £ ={A1,A9,...} a
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(finite or countably infinite) partition. The entropy of ¢ is
HE) ==Y wA)logy((A;)),

izl

where 0log0 is defined to be 0.

Recall that for A,B € o/ the conditional measure of A with respect to B is
WANB)

wB) -
It describes the probability of the event A happening assuming that the event B

has occurred.

For any measurable set B we can consider the measurable subspace (B, /|, u(:|B))
defined by restricting p to B, where

Alp={ANB:Aec}

wA|B) =

and u(-|B) is the conditional measure restricted to B. Given any partition ¢, we can
then consider the partition ENB ={ANB:A €} and then

— Y u(A;|B)logy(u(A;|B))
i>1
is the entropy of the partition £ N B with respect to the conditional measure. This
leads to the following definition.

Definition 106. If { ={A1,Ay,...} and n={B1,B,,...} are partitions, then the con-
ditional entropy of £ given 1 is defined to be

HGIm =Y p(B;)(- ¥ pAilB,)logy(1(A;1B,))). (7.2.1)
=1 i>1
Formula (7.2.1) should be viewed as a weighted average of entropies of the
partition ¢ conditioned on the individual atoms Bj € 7. It represents the average
information gained from the outcome of ¢ after being told the outcome of 7.

Theorem 107. Let { ={A1,As,...}, n=1{B1,Ba,...}, and { ={C1,C3,...} be (finite or
countably-infinite) partitions of a probability space (X, <, 11).
(1) H(¢) =0, with equality if and only if u(A) =1 for some atom A € £.
“No information is gained by conducting an experiment where one of the outcomes is almost
surely certain.”
(ii) If¢ is a finite partition with r atoms then H({¢) < logr, with equality if and
only if u(A) = 1/r for each atom A €¢.
“Less bias implies more information.”
(i) H(E V)= H@)+HEn).

“The amount of information gained by learning the outcome of ¢ and 1 simultaneously equals
the amount of information gained by first learning the outcome of 11 and then learning the
outcome of & given that we already know the outcome of 1.”
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(iv) H(&) > H(|n) and H(é|n) > H(E v ).
“The amount of information gained with preexisting knowledge is always smaller or equal than
the amount gained without preexisting knowledge.”

(v) H(S) =0.

“If we already know the outcome of & then there is no information gained by observing the
outcome of £.”

(vi) Two partitions ¢ and 1) are independent if and only if H( v n) = H()+ H(n) if
and only if H(¢|n) = H(¢).
“If two experiments are independent then knowing the outcome of one does not influence the
amount of information gained by observing the outcome of the other.”

(vii) IfT: X — X is a measure preserving transformation on (X, </, p) then H(T~1¢) =

H(¢). Similarly, we have H(T1¢|T1n) = H(¢|n).
“Conducting and observing the outcome of an experiment now or 1 time-unit from now yields
the same amount of information.”

7.3. Connections to Entropy in Physics and
Information Theory

Before learning about entropy in information theory and ergodic theory, the
reader may have encountered the analogous notion in physics or information theory.
Here is a link to an informative video that explains how one can view entropy
in physics from a probabilistic angle, revealing the connection between classical
entropy studied in thermodynamics, and the notion of entropy that we defined in
the previous section: "What is entropy? — Jeff Phillips”

If you want to learn more about how to use entropy in applications, check out
this video: ”Solving Wordle using information theory”

7.4. Entropy of a Measure-Preserving
Transformation

Fekete’s Lemma. Let (a,),en be a sequence of real numbers satisfying
an+m gan +am, Vn,mEN. (7.4.1)

Then the sequence a;" converges and

. Qanp . ,Qp
lim — =inf —.
n—oo n neN n


https://www.youtube.com/watch?v=YM-uykVfq_E
https://www.youtube.com/watch?v=v68zYyaEmEA
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Fekete’s Lemma is used to define the measure-theoretic entropy of a measure
preserving transformation. Let (X, </, u, T') be a measure preserving system and let
¢ be a measurable partition of X. Consider the sequence (a,),en defined by

n-1
an=HEVT v .vT- "D =H(\ T7%).
i=0

This sequence is sub-additive in the sense of (7.4.1). Indeed, combining parts (ii)
and (iii) of Theorem 107 then gives

n+m—1

an+m=H( \=/0 T_if)

n+m-—1

gH(n\;/: T'¢) + H| Vv %)

and using part (vii) of Theorem 107 now yields

n-1 . n+m-1 . n-1 . m-1 .
H(\V 17%)+H( V 17%)=H(\ T7%)+H(\ T7¢)=an+an.
i=0 i=n i=0 i=0
It follows from Fekete’s Lemma that the limit
. 1 n-1 i
Yim - H(V 77

always exists.

Definition 108. Let (X,</,u,T) be a measure-preserving system and ¢ a (finite or
countably infinite) partition of X with finite entropy, H(¢) < co. The entropy of T
with respect to & is

MT,&) = li 1H(n\_/1 %)
> nteon i=0 .
If H(¢) = oo then we define A(T', &) = co.

Entropy quantifies the amount of uncertainty or randomness in a system. Heuris-
tically, a system with low entropy is more deterministic than a system with high
entropy. In particular, a system with zero entropy is deterministic in the sense that
the past determines the future. The next theorem conceptualizes this heuristic.

Theorem 109 (Entropy conditioned on past). Let(X,<,u,T) be a measure-preserving
system and ¢ a (finite or countably infinite) partition of X with finite entropy. Then

n-1
h(T,&) = lim H(T"‘E \_/0 T‘if).

Proof. For convenience, write w(n) = H(T~"¢|\/?-J T~*¢). First, we observe that
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w(n) > 0 and, using (iv) and (vii) of Theorem 107,

wn+1)= H( - ‘ié)
<H(T “ig)
n-1 .
= H(T‘"f \=/0 T“E)
=w(n).

So we conclude that w(n) is a non-negative and non-increasing sequence, which
means that lim,,_,., w(n) exists. Next, it follows from property (iii) of Theorem 107
that

n-1 . -
(- enfrf g
:H(\/2T ‘) +w(n-1)

1=0
=H(n\_/3T_if)+w(n—2)+w(n—1)
i=0

=w0)+w@)+...+wn-1).
It follows that

1 n-1 . 12
MT,¢) = lim —H(V T“E) = lim = Y w(i) = lim w(n),
n—oon i=0 n—oon =y n—oo

where we have used the basic fact that the Cesaro average of a converging sequence
converges to the limit of the sequence. O

Theorem 110 (Entropy conditioned on future). Let (X,</,u,T) be a measure-
preserving system and ¢ a (finite or countably infinite) partition of X with finite
entropy. Then

—i é.) .

Proof. Let us use v(n) to abbreviate the expression H (¢ | Vi, T & ). An argument
analogous to the one used at the beginning of the proof of Theorem 109 shows that
v(n) is a non-negative and non-increasing function in n» and hence the limit

i E)

WT,0) = lim H(e|

n
lim v(n) = lim H(é
n—o0o n—oo v
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exists. Using Theorem 107 we see that

H(n\;/: T = H(iT‘if) +H(¢

AN

/
/

v n-2
property (iii) of Theo- = H( V T_lf) +v(n)
rem 107 4 i=0
e .
property (vii) of Theo-
rem 107 n—3 .
=H( T_’E) +v(n—-1)+v(n)
i=0
=v(0)+v(Q)+...+v(n—-1)+v(n).
We conclude that

.1 _m1 —i . 1& . .
W6 = lim BV 77%¢) = lim = 3. 0(i) = lim o(n),
where the last equality follows from the fact that the Cesaro average of a converging
sequence equals the limit of that sequence. O

With Definition 108, and Theorems 109 and 110, we now have seen 3 different
characterization of h(T,¢):

(T, = lim %H(:_L\;/:T‘iﬁ) = lim H(T™"¢ ET‘iﬁ) = lim H(¢ iz\n/lT—if)

\ J
v~ v

(1) (2] (3]

Each of these formulas admits its own interpretation of entropy as a dynamical

» «

invariant, measuring the “randomness”, “uncertainty” or “chaos” inside a dynamical
system.

€ : Entropy can be understood as the average information gain by observing an out-
come over time. By interpreting a partition ¢ as a random variable representing the
outcomes of a random process (think of conducting an experiment that has finitely
man outcomes, like rolling a 6-sided die or counting the number of passengers on
the bus each morning during your commute to work), we can view H (V;:O1 T ) as
the expected information gained by observing the outcome of this random variable
at n different points in time, from time O to time (n —1). Since we have conducted
n observations, it is natural to divide by n to normalize the expression, yielding
the average information gain over time. According to this interpretation, zero en-
tropy is indicative of a diminishing amount of new information obtained with each
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consecutive observation.

©): Entropy can also be viewed as a measurement of how much the past determines
the future. The conditional entropy H(¢|n) measures the amount of uncertainty
in observing ¢ after having already observed 7. In this sense, the expression
H (T‘”f | V;‘;OI T‘if) measures the amount of uncertainty in the future state 7¢
subject to the knowledge of its past and present states V’i’;()l T-&. In other words,
it quantifies how much additional information is needed to predict the outcome at
time n given that we already know the outcomes at times 0,...,n — 1. According to
this interpretation, a transformation has zero entropy if, as n gets larger and larger,
there is less and less amount of new information obtained at time n once we have

already learned what happened at times 0,...,n — 1.

€): Finally, we can interpret entropy as the level of reciprocality between cause
and effect. It measures how who much information can be inferred about the initial
state of a system when knowing the future trajectory of the system.

Definition 111. The entropy of T is
h(T) = sup h(T\,¢).
¢

where the supremum is taken over all finite partitions of X.

Kolmogorov-Sinai Theorem. Let (X,o/,u,T) be a measure preserving system
and suppose ¢ is a generating partition of (X ,</,u, T), which means <f = a(V;’ZO T4 )
Then h(T) = h(T,¢).

Lemma 112, Let (X,</,u,T) be a measure preserving system and suppose £ is a
generating partition of (X,s/,u,T). Then for any finite partition 1) of X with finite
entropy we have

lim H(n

n—oo

n-1 .
V T7%¢) =o.
i=0

Proof. Given 6 >0 and n € N define
n-1 .
P ={Acat:ABeof v T~%¢) with (AAB) < 6}.
l=

It is not hard to verify that Ns>o Unen dgn) is a sub-sigma algebra of «f containing
T-& for all i e NU{0}. Since ¢ is a generating partition of X, it follows that

=N U =" (7.4.2)
6>0 neN

Suppose 1 ={Bj,...,Bs}. From (7.4.2) it follows that for all § > 0 there exists some
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n €N and some sets
, , n—1 .
B,,....Byeo(\/ T7%¢)
i=0

such that d(B;AB]) < § holds for all i = 1,...,s. Define ' = {B],...,B;}. Since
Vi, 1 T-i¢ is a refinement of iy’ (which means that every set in ' can be obtained by
takmg a union of atoms in V?z"ol T-i¢ ), we have that

n—-1 . n—-1 .
v\ Té=\ T
i=0 i=0
Using property (iv) of Theorem 107 we see that
n-1 .
H(n| \/ T7%¢) = H{n|n

So to finish the proof it suffices to show that H(n7|n) is small. Recall that

‘if) <H(@ln).

S S
Hin')= Y- w(B))( 3 #(B;|B})logy (14(B;|B))).
i=1 j=1
We have
p(BinB’)
wB’)
[[Proof to be completed later.]] O

p(B;|B’) =

Proof of the Kolmogorov-Sinai Theorem. Suppose ¢ is a generating partition of (X, </, u, T').
Our goal is to show that for every finite partition 1 one has

h(T,m) < A(T\3),

because this will prove h(T,¢) = sup, h(T,n) = h(t) as desired. So let 1 be a finite
partition of X. Using the definition A(T',7n) and then property (iii) of Theorem 107
twice, we get

BT, = lim — (V Tn)

sz (g Y
i 21 ) (Y g
:""'°°m =0 i=0 ) meeom m AARA /

[ 2]
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On the one hand, we have

m+n—1

[1]= lim —H H V %)

m—oom

= lim m+n( (m+\7 lT“E)) = W(T, ).

m—oo m m+n

On the other hand,

-V g ==

It follows that h(T',n) < h(T, &), completing the proof. O

Corollary 113. If the entropy of (X,</,u,T) exceeds A then every generating
partition of (X, </, u, T') must contain at least |2*| many atoms.

Proof. Suppose ¢ is a generating partition of (X, </, u,T). Then

Fekete’s Lemma

A<h(T) = AT,0 =Tim L H(N T © inf LN/ T-i¢) < H® < logtr)
<KD = WEO=g BV T7¢) = ot BV T7) SHO < logt)
Kolmogorov-Sinai Theorem Property (ii) of Theo-

rem 107

where r is the number of atoms in é. The claim follows. O

Proposition 114, Let (X,</,u,T) and (Y,98,v,S) be measure preserving systems
and consider the product system (X xY , o/ ® B,u®v,T xS). Then h(T xS) = h(T) +
h(S).

Theorem 115. Let (X, «/,u,T) and (Y ,98,v,S) be measure preserving systems and
suppose (Y ,%,v,S) is a factor of (X, </ ,u,T). Then h(S) < h(T).

Corollary 116. Let (X, ,u,T) and (Y ,9,v,S) be measure preserving systems. If
X,o,u,T) and (Y ,9B,v,S) are isomorphic then h(T) = h(S).
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